Tag Archives: theories

Fun Physics Questions: Does time flow in baby steps?

Question: is it possible time flows in little steps?

At some small scale, could it be, that time is simply a ‘symptom’ of a sequence of events, or states, that there is no actual time passage ‘between’ those states?

This scenario has interesting implications – it suggests life is a bit like a movie – a series of pictures on a strip of celluloid, or pages in a book, and like a book, while the story may unfold to you at whatever speed you read it, it does not matter how fast you read the story itself still has its own pace.

This doesn’t mean the book has to be pre-written, it can still unfold with utter unpredictability, the book is unfinished if you like – the important point is that we are stuck experiencing the passage of time at a rate determined internally – by the rate of chemical reactions in our brains. The drum beat of those reactions would feel the same no matter how fast or slow they seems to an outside observer. They could even be paused for a few minutes – we could not tell!

Now physicists studying energy balances of sub-atomic particles have seen that energy often seems to come in little chunks (the ‘quanta in’ quantum), and that can imply that time may also be chunky (maybe Planck time?); alas, time chunking has contradictory implications – contradictory to common sense anyway- like infinite energy flux, not to mention infinite speeds, but hey if you can just get your head around some of the workarounds physicists have dreamed up (quantum tunnelling for example) everything’s all right again. I am personally highly suspicious of workarounds, and that is what I think they are!

Anyway, even if you try to get away from quantum weirdness, you get sucked back in – take for example this geometrical example. Consider the relative positions of three point objects (small particles?) moving freely in space: they could, for an instant, line up perfectly, but if your measurement were infinitely accurate, this could only occur for an infinitely small duration so long as the particles are moving. If you try to explain this by saying space is divided up into chunks (like ‘snap to grid’ in MS Powerpoint) you get into geometrical issues that three points cannot always be integer increments apart  (nor even rational increments apart) without breaking the most basic number axioms.

So even if space isn’t chunked, it turns out you can appeal to the uncertainty principle, which handily says you can only measure the position of anything infinitely accurately if you allow its momentum to be anything at all, including infinite – and infinite momentum is exactly what you (temporarily) need if you are bold enough to let time ‘leap’.

So none of these issues with time chunking turn out as solid proofs against the possibility, they just make things more slippery!

Aside: rather than a book, I like to think of our universe as being a bit like a computer program  – I like to think about Pac-man when it plays itself in ‘demo mode’ – in demo mode, used to allure people at the arcade, the computer controls both the ghosts and pac-man. In the computer, a sequence of commands is run in the CPU and the speed of the computer (like the reader of the book) controls the rate at which we ‘see’ the ghost-chase on the screen, but this speed is invisible to pac-man himself – yes the ghosts chase faster across the screen, but he can run faster too.

[youtube=http://www.youtube.com/watch?v=htl_vwkZWHw&NR=1]

Question: Does a time-increment universe allow time travel?

Well I don’t think we can ‘skip’ events out (we have to experience them all), but if we can go somewhere where events are more or less ‘dense’, maybe we can. We will not feel the difference, we will not get any extra life-span, our cells will age just the same – but if a friend had gone to another place is space-time, where events have bigger gaps, he may have aged at a different rate, and when you meet your friend again one of you will have time travelled forward and the other backward relative to one another.

Is this really possible? Well, yes, I think so – this model ties in very well with relativistic time travel: if you assume events are more spaced out (less dense, with bigger ‘leaps’ between them) in areas with more mass nearby. or when moving vary fast, it maps perfectly.

Conclusion

That’s it for now! Of course, maybe time does not leap, I don’t know, but its something I love to think about! Please let me know your thoughts…

Confirmation bias: confirmed as bias.

I have this theory that ‘confirmation bias’ is a load of BS, so I looked on the net and found, after careful search, some people who clearly agree with me. Most don’t, but they must be idiots.

:

The compensation factor – or why shoes might just be bad for your feet

There are many modern innovations around which we take for granted as good, that are, indeed, not.

Some interventions, such as seat belts, are shown by statistics to save lives, and as the cost of strapping in is not too high, so the case in favour is strong.

But what about modern running shoes? It may be turning out that nice cushiony running shoes actually cause more injuries than they prevent – and for a similar reason that taking out all the safety features from a traffic intersection may actually make it safer.

Why is this so?

It seems in these latter cases that making people safer only leads them to take more risks, sometimes cancelling out the benefit completely – this is has been termed “risk compensation” – but how does that apply to running shoes?

It turns out the cushioning makes us feel safe – safe to slam down our heels without feeling the shock. It also turns out that while it may feel ok, it allows us to use our foot in a way it was never intended, and results in far greater forces going up our legs.

Think for a moment about the foot of a cheetah, or a deer, or a dog. Ask yourself, where is the heel?

Of course, it is clear once you think about it, it’s way up the leg, far from the floor! And do you think a cheetah has thuds of force going up its spine? I don’t!

Ok, so someone could point out we did not evolve from gazelles and they could also point out that no other primates show a raised heel; true enough – but primates started off as rubbish runners, and it was only the humans that  started down the road to better feet for running during all those years hunting on the African savanna. Whenever there is selective pressure to run, that great engineer (evolution) eventually finds that a raised heel is the optimal solution – remembering of course that the engineer has only the stump of a redundant old fin to work with. Of course, the invention of shoes (and ultimately cars) has completely removed the shaping forces, so I guess our heels will fall once more.

Don’t agree? Ok, pop on those big comfy shoes, and just like a beemer driver cruising at 100mph, tell yourself its safe to slam down those heels 😉

Some interesting sources:

  1. Walking robot – gee look, to make it work, they abandoned heels: http://www.youtube.com/watch?v=sv35ItWLBBk
  2. Walking robot “with heels” seems to need bizarre extra hip mobility: http://www.youtube.com/watch?v=67CUudkjEG4&NR=1
  3. Even Nike, they who started the whole thing now seem to admit openly that bare is best, and sell you the shoe that does it for $90: http://inside.nike.com/blogs/nikerunning_news-en_CA/2009/07/12/engineering-the-nike-free-50
  4. Take a sneak-peek into the barefoot community: http://www.barefootted.com
  5. Oh, and I got put on the scent of this by Christopher McDougall’s excellent book, Born to Run: http://www.chrismcdougall.com/
  6. In the wiki for Risk Compensation it interesting to learn that in Sweden, traffic collision rates dropped for 18 months after they changed which side of the road they drove on. Wow!
  7. The classic tale about how making roads seem more dangerous made them safer: http://www.wired.com/wired/archive/12.12/traffic.html

How people use negativity to influence and self-promote

I have learned through my career that being negative can be a very powerful social tool.

For example, if you taste a freshly opened bottle of wine and declare it ‘decidedly average’ to the surrounding company, what will they think? People who dislike the wine will like you as you clearly share their discerning taste, whereas those that like it will imagine that you must drink some rather marvellous wines at home. It would only be a very small minority of experts who may actually determine if your judgement is a fair assessment, and even then, wine experts have admitted openly to me that it is largely a matter of personal taste anyway once you get to a certain minimum level of quality.

On the other hand, being positive about the wine is more risky. People who like it will be fine, but those that don’t will assume you to be either incompetent or at best, to have strange taste.

Thus you can see, that if your choice of commentary is to be “done by the numbers” then being a little negative is a good strategy.

Of course, wine is fairly trivial, but this concept goes much further. Imagine, if you will, a panel discussing a job applicant.

Imagine yourself on an esteemed panel, and your job is to discuss the most recent hopeful. Eyes turn to you. If you say you though the applicant was superb, and they agree, all is well – however, if they felt the person’s claim at competence was a flagrant lie, they would be inclined to review their opinion of you. If, on the other hand you are generally dismissive, the others may be led to think you know something they don’t.

This phenomena, while not often discussed, has been commonly found to be highly developed, but , I would suggest, more often by accident than design. In other words, some people, who are wont to be negative and dismissive may rise to positions of respect and influence for no good reason other than people’s assumptions about them. These individuals have no alternative to assuming that they are indeed wise and discerning, since they are so routinely deferred to.

There are most assuredly also people who use the method deliberately, but I have yet to see the skill claimed when I have discussed it openly.

After deciding to rant a little on the subject on this blog, I thought it may be just the thing to actually do a little research. It did not take long to see similar effects being used in other walks of life. It turns out marketeers and advertisers have long known about the power of negativity – the theory that the fear of loss is stronger in us than our ambition for gain, is borne out in our tendency to allow negative product reviews more to sway us further than equally positive ones. Thus the strong desire by advertisers (or politicians) to denigrate the opposition rather than to spend time actually developing some genuine merit.

The Take Away

So what can be done about it? Well clearly it is well worth taking a moment to reflect the next time we hear someone being negative about something. I also suggest a much more interesting course of action. Next time you are chatting idly to a colleague to whom you may have in the past turned to for advice or critique  – and ask yourself: are they one of these nasty negative nancies?  Unless they are positive at least half the time, I posit they are, and you should smile inwardly and take them down a notch or two.

Will art, the talent for emotional manipulation, be overtaken by science?

There is something in our makeup that makes us appreciate hard work. When we admire the pyramids at Giza, or the fine chinese lacquerware, we can imagine the effort that must have been involved. Not just the muscle – but the discipline – lifetimes of work.

When I was a teenager, I spent many hours drawing – and I got pretty good but at some point, I think I was 19, I just stopped. Why? I think I looked at my creations and compared them with photographs and found them wanting. What was the point of photo-realistic drawing in a world full of cameras? It occurred to me that of course I was still impressed with work like that of Chuck Close, but I could not understand why. Not only does he bring realism to it’s logical extreme, but then he takes to tricks like using how our eyes merge small dots to compose images. Why is this trickery impressive? It goes beyond realism, it impresses us with it’s cleverness, rather than it content – the content becomes pretty much irrelevant.

So we are impressed not only by the evidence of labour, but of cleverness. However, when I think about what I achieve in life, I do not want to be known for simply being hard working, or clever, but rather for what I actually achieve. Simply drawing well demonstrates an ability, but unless that ability is then applied to important work: protecting the environment, mitigating injustice, that sort of thing, or at least to inspire others to do so, it could be considered pure vanity.

So I gave up on drawing. I am a bit older now and have come to re-evaluate this position with the benefit of a few more years.

One thing I have learnt (from my closest family who turned out, as luck would have it, to be talented artists) is that there is more to art than my painfully logical mind wants to admit. I can obviously not explain art in a nutshell – besides, like so many things worth knowing one really needs to find this out for oneself.

What I want to focus on here, as usual, is the scientific approach to art, and to start I will make a controversial claim…

Art taps into instincts, and does not understand itself.

Think of a beautiful singing voice. It is clearly possible to play the heartstrings with the right voice. Even if the song were written by someone else, one would struggle to argue that the songwriter or singer can explain why the song plays the heartstrings. I venture that this is similarly true for beauty.

On the other hand, the field of science progressing fastest of late is the study of the human mind. We are only just starting to understand its complex mechanisms, and if a good neuroscientist is happy to admit we are scratching the surface, then it is probably fair to say the poet is playing the instrument of the mind the way most people use a computer – without a full understanding of its workings.

Without insight into the workings of a system, the poet is reduced to trial and error, treating the mind like a black box, poking it and prodding it and seeing the response. While this type of analysis has revealed much about the mind, it is necessarily lacking and frequently runs into inconsistencies that cannot be explained.

As our ancestors have interacted for millennia, we have developed very strong insights for how the mind works and instincts about how to manipulate it; science is still playing catch-up to what every mother, every teenager or anyone with heartache already knows.

However, we are now rapidly approaching the stage when science will start to ‘have an opinion’ about the merit of Shakespeare or Puccini – observing in vivid detail how stories or melodies act to create virtuous cascades in the mind.

So if this analysis is fair, what are the implications? Does it render the arts any less valuable? No, let me explain.

The analysis suggests that the arts are the field of emotional manipulation, developed as an emergent* ability, a field that has been inaccessible to the sciences due to the complexity of the mind – but will not remain so. The arts pull on thousands of years of learning about the human mind, what impresses, what inspires, what angers and what calms. These learnings will not be rendered invalid, they will simply be explained.

Perhaps the artist in you is reviled by this possibility, perhaps the opposite – the emotions will still be real and we will be able to drive them all the better.

I personally suspect there is merit in the vagueness of art. Some of my favourite songs seem to lose their appeal when I finally learn all the lyrics and find them more mundane than I had imagined.

Perhaps the arts can just ignore the march of science?

=========================

Footnotes:

*Emergence is the phenomena of complexity (such as the arts) developing as a side effect of simpler lower order phenomena (emotional stimulus & response). It implies the higher order phenomena was not designed, is not deliberate and therefore cannot credit anyone (or itself) for its merits.

Stuff I Wish I Had Read When I Was Younger

Over the years I have supervised and mentored several PhD students, and recently our firm started to award scholarships to undergrads, and I was asked to support one such scholar. These scholars are from the best and brightest and so I got to thinking…

Graduates today have it tough, competition is tough, people work longer and harder than ever and stress is hitting us earlier and earlier in life – or so it seems. I would argue that, to some real extent, things have always been getting worse, and therefore by induction, we can prove that they have haven’t really changed at all.

No, the graduates of today have unparalleled opportunity to learn, to travel and to experience. The brightest graduates have the world at their feet and will be its commanders when we are are all retired and done for.

So what could I do to support this scholar? In the end it was easy – I asked myself – what do I know now that I wish I had known sooner? Most of this is in attitudes and is deep in my psychology, and is the result of direct experience – but it turns out that a healthy chunk of my scientific learning experience can be re-lived – by reading some of the books I think steered my course.

So I made a point to summarize some of the best science related books I have read (and some of the most useful internet resources I have found), and dumped the list complete with hyper-links in an email to the scholar. I hope she goes on to be president!

Now having gone to the effort, it would be a crime to keep this email secret, so here it is, (almost) verbatim!

================

As promised, here is a list of useful resources I wish I had known about when I was an undergrad. I am glad I got round to this, it should be useful for several other students I work with, and has also led to me revisiting a few things! I think I may brush it up and pop in on my blog if you don’t mind…obviously I won’t mention you!
Anyway, back to the business. To me, science is not all about chemistry, molecules, atoms, valence electrons and so on. To me, is is the process of trying to understand the world, and this set of materials I have hand picked, should you get through even a part of it, will not only educate but inspire.

This may not be the very best list, and I am sure there are many great books I have not read, but I have stuck with ones that I have, so you will have to rely on other people for further recommendations.

Jarrod’s reading list: science/psychology/economics & so on

  • I’ll start with something really easy, relevant and engaging – an excellent (if quirky) summary of material science: The New Science of Strong Materials – Prof Gordon  has written another on Structures that is also worth reading.
  • Ok, this next one is not a book, but a paper; I like it because it shows that many stuffy professors are wrong when they prescribe boring scientific prose for papers. This paper uses the criminal “us” and “we” and discusses subjects as if with a friend. Shocking form, especially for a junior scientist. This paper by an unknown, changed the world.
  • Guns, Germs and Steel” – this is large-scale scientific thinking at its best- the book looks at how we can explain why the world is the way it is (especially the inequality) by looking at how technology spreads through societies.
  • Mistakes were made…but not by me” – this is required reading if you want to work with other people, so its basically for everyone then…
  • Then to take it to the next level – “How the mind works…” – Stephen Pinker‘s other books are also good if you like this one.
  • “Flatland”, (full text here) was written in 1884, and is essential reading because it defines the cliche “thinking outside of the box”.
  • To make your upcoming economics courses more interesting, first read this easy-to-read popular book: “The Undercover Economist“.
  • Also, Freakonomics– it’s shameless self promotion by egotistical authors, but hell they are smart, so put up with it.
  • The Tipping Point –  Malcolm Gladwell is a current thinker I really like; he’s not satisfied to focus on one thing for very long – his other books are on totally different stuff, but are equally thought provoking.
  • The selfish gene” – Obviously I would firstly recommend “On the Origin of Species”, (full text here) but if you are short of time (which you should be as an undergrad), you can learn most of the basics, and also get updated (well up to the 1970’s at any rate) by reading Dawkins’ classic.
  • I couldn’t ignore statistics, so I will include two – one classic, “How to Lie with Statistics”  and a more modern one “Reckoning with Risk“, they are quite different, but either will get the important points across.

Alas, books are perhaps becoming obsolete, so I better include some other media:-

  • The first one is so good I can’t believe its free – try watch at least one a week, but the odd binge is essential too. http://www.ted.com/
  • Next, an excellent physics recap (or primer) – but  you need lots of time (or a long commute!) to get through this lot – look on the left menu for Podacts/Webcasts on this webpage: http://muller.lbl.gov/teaching/physics10/pffp.html – I cannot begin to praise the worthwhileness of this enough. It used to be called “Physics for future presidents” because it teaches you enough to understand the risks of nuclear energy, and the likelihood that we will all run our cars on water – and let you know when you are being duped or dazzled by big words.
  • When I was somewhat younger there was a TV show called Cosmos, hosted by Carl Sagan, you may know of it. You could watch in now here, though obviously it is dated, so perhaps you shouldn’t; the reason I mention it, is because it was key in creating a generation of scientists, people who were inspired by Carl to be inspired by the universe. The previous generation had the space race and the moon landings to inspire them, but since then science has been on a downhill, with 3-mile island, global warming, etc, etc, and we have had no more Carl Sagans to cheer for us; Cosmos was a rare bit of resistance in the decline of the importance of science in society. You may also know that there have been battles in society (well in the circles on intelligentsia at any rate) about science – on the one had the ‘two cultures debate‘ and more recently, the ‘anti-science’ movement (suggested in books like “The Republican War on Science“. I do not wish to indoctrinate you, but rather make you aware that being a scientist used to be cooler and used to be more respected and something is indeed rotten in the state of Denmark.
  • Getting back on track, here is an excellent guide to critical thinking (something else sadly lacking in the world) – don’t read it, listen to the podcast versions (also on itunes):
    “A Magical Journey through the Land of Logical Fallacies” – Part 1 and Part 2
    I think this should be taught in school. Brian Dunning’s other Skeptoid podcasts put these lessons into practice showing how a scientific approach can debunk an awful lot of the nonsense that is out there (alternative medicine, water dowsers, fortune tellers, ghost hunters, etc etc).
  • If you do happen to have any time left, which I doubt, there are several other podcasts on critical thinking – that use a scientific approach to look at the world and current affairs: –

=============

Postscipt – Dear readers, please feel free to append your own recommendations to my letter in the comments section below. If there is one thing I know well, and that’s how little I know. I feel I only started to read ‘the good stuff’ far too late in life, and so those with more years than me (or better mentors), please do share. But bear in mind, this is principally a science oriented list, and is meant to be accessible to undergraduates – I left out books like Principia Mathematica (Newton) because it is really rather unreadable – and the Princeton Science Library (though awesome) is probably a bit too intense. Also, in the 30 minutes since I sent the email, I have already thought of several others I sort of, well, forgot:

That’s it for now…

What exactly is temperature? Ever wondered?

We take it for granted. We understand it. It is obvious what temperature is. Cold, warm, hot…obvious.

But how many of us have asked the next question: what is the real difference between a hot stone and a cold one? The answer is interesting and helps us to realise that measuring temperature is much trickier than we tend to suppose.

Over many hundreds of years, many clever people have devised lots of experiments to understand what temperature is, I hope in this article to round up the facts!

Temperature and Energy

For much of history, there were only a few sources of heat – the sun, fire, lava and of course the warmth of living creatures.

People were puzzled by what created it, but it was immediately obvious that it had one consistency – whenever it had the chance, it flowed – put something hot next to something cold, and the heat would flow.

Of course you could argue that it was the ‘cold’ that flowed (the other way), but there were no obvious sources of ‘cold’. While ice was clearly cold, it was not a sustainable ‘source’ of cold the way a fire was.

It was also noted that heat melted things – like fat or butter and that it make some liquids (like molasses) thinner. It could even boil water and make it ‘vanish’. The mechanisms for these were unknown and a source of fascination for early scientists.

Early experimenters noticed that gases would increase in volume upon heating, and that compressing gases would cause them to heat up. They also investigated other sources of heat, like friction, (rubbing your hands together).

It was the work with gas that led to the big breakthrough. Boyle and Hooke, as well as Edme Marriotte, working in the 17th century, realized that the temperature of a gas would increase consistently with pressure, and like-wise, decrease consistently with pressure. This sounds unremarkable, until you note that you can only decrease pressure so much…

Once you have a vacuum (no pressure), you should have ‘no temperature’. Thus their observations implied that there really was a limit to how cold things could get, and predicted it was around -275 Celsius. They were of course unable to cool anything that far simply by expanding it because heat always flows into cold things, so to achieve this you need much better insulation than they had available.

So they had a big clue in the search to understand what temperature is, but still no explanation.

It took until 1738 until another great scientist moved us forward. Daniel Bernoulli realised you could use Newton’s (relatively new) laws to derive Boyle’s temperature-pressure relationship. He basically asked: what if gas was made of a large number of very small billiard balls flying around crashing into everything? What if pressure was just the result of all these collisions? Using this theory he realised, for the first time I think, what temperature truly is.

Source: Wikimedia Commons

It turns out that his model equated temperature with the speed of the billiard balls. A hot gas only differs from a cold gas in the speed of the molecules flying around. Faster molecules crash with more momentum and thus impart more pressure. Squashing the gas into a smaller volume does not give them more speed, but means more collisions each second, so higher pressure.

This is a pretty serious finding. It basically says ‘there is no such thing as temperature’. There is only lots of little balls flying around, and their number and speed dictate the pressure they exert, and there is no ‘temperature’.

If we put a thermometer into the gas, what is it detecting then? Great question.

It turns out that solids are also made of lots of balls, except, instead of being free to fly around, they are trapped in a matrix. When a solid is exposed to a hot gas,  it is bombarded by fast flying atoms. When a solid atom is hit, instead of flying off, it starts to vibrate, like a ball constrained by a network of springs.

So the ‘temperature of a solid is also a measure of speed of motion, but rather than linear speed it’s a measure of the speed of vibration. This makes a lot of sense – as the solid gets hotter, the balls are going literally ‘ballistic’ and eventually have enough speed to break the shackles of the matrix (aka melting).

Source: Wikimedia Commons

So this model of heat as ‘movement’ not only explains how gases exert pressure, but also explains how heat flows (through molecular collisions) and why things melt or vaporise.

More importantly, it shows that temperature is really just a symptom of another, more familiar, sort of energy – movement (or kinetic) energy.

Energy is a whole story of its own, but we can see now how energy and temperature relate – and how we can use energy to make things hot and cold.

Making Things Hot

There are many easy ways to make things hot. Electricity is a very convenient tool for heating – it turns out that when electric current flows, the torrent of electrons cannot help but buffet the atoms in the wire, and as they are not free to fly away, they just vibrate ever faster, ‘heating’ up.

Another way to heat things is with fire. Fire is just a chemical reaction – many types of molecules (like methane, or alcohol) contain a lot of ‘tension’, that is to say, they are like loaded springs just waiting to go off. Other molecules (often oxygen)  hold the ‘key’ to unlocking the spring, and when the springs go off, as you can imagine, it is like a room full of mousetraps and ping-pong balls – and all that motion – means heat.

[youtube=http://www.youtube.com/watch?v=Pmy5fivI_4U]

Making Things Cold

Manipulating energy flows to make things cold is much trickier.

One way it to just put the thing you want to cool in a cold environment – like the north pole. But what if you want to make something colder than its surroundings?

Well there is a way. We learned earlier that gases  get hot when compressed – it turns out they do the opposite when decompressed or ‘vented’. This is the principle that makes the spray from aerosol cans (deodorant, lighter fluid, etc) cold. So how can we use this? First we use a compressor to compress a gas (most any gas will do); in the process it will warm up, then you let it cool down by contacting it with ambient air (through a long thin copper tube, but keeping it compressed), then decompress it again – hey presto, it is cold! Pump this cold gas through another copper tube, inside a box, and it will cool the air in the box – and hey presto, you have a refrigerator.

Measuring Temperature

Before we had thermometers, temperature was generally estimated by touch.

However this is where temperature gets tricky. Because the temperature we feel, when we put our hand on the roof of a car is not really the temperature of the car, it’s really the measure of energy flow (into our hand), which relates to the temperature, but also relates to the conductivity of the car.

This is why hot metal feels hotter than hot wood, why cold metal feels colder than cold wood – the metal, if at a different temperature to your hand, is able to move more heat into you (or take more heat away) faster than wood can. Thus our sense of temperature is easily fooled.

The ‘wind-chill factor’ is another way we are fooled – we generally walk around with cloths on, and even without clothes we have some body hair – therefore, we usually carry a thin layer of air around with us that is nearly the same temperature as we are. This helps us when it is cold and when it is hot – however, when the wind blows it rips this layer up and supplies fresh air to our skin – making us feel the temperature more than usual. Also, because our skin can be damp, there can be evaporative effects which can actually cool you below the air temperature.

Scientists have long known that we cannot trust ourselves to measure temperature, so over the ages many tricks have been developed – can the object boil water? Can it freeze water? A long list of milestone temperatures was developed and essential knowledge for early scientists – until the development of the lowly thermometer.

It was noted that, like gases, solids and liquids also expand upon heating. This makes intuitive sense if you think of hot molecules as violently vibrating – they push one another away, or at least if the charge  (electric charge is what holds these things together) is spread just a little thinner, adjacent molecules will have slightly weaker bonds.

The expansion of liquids may only be very slight, and if you have a big volume of liquid in a cup, the height in the cup will change only very slightly, but if its in a bottle with a narrow neck, the small extra volume makes a bigger difference to the level. This principle is used in a thermometer – it’s just a bottle with a very narrow and long neck. The bigger the volume and the narrower the neck, the more sensitive the thermometer. Of course the glass also expands, so it is important to calibrate the thermometer – put it in ice water, mark the liquid level – then put it in boiling water and mark the new level. Then divide the distance between these marks into 100 divisions – and hey presto! you have a thermometer calibrated to the centi (hundred) grade (aka Celsius) scale. Now you know where that came from!

=================

So that is temperature explained in a nutshell.  If you enjoyed this article you may enjoy my related article on energy.

How to prove that space is curved…

Question: if you lived in flatland (a 2-d world), how could you tell if the land was curved in the third dimension?

Answer: geometry!

It turns out many of the mathematical rules we learned at school ‘fall apart’ if the working surface is curved. For example, can you draw a square on the surface of a sphere? No!

So can we use this insight to tell if our 3-d world is curved in a mysterious fourth dimension? Yes!

If we set off from earth, went in straight line for, say 1 light-year, then turned 90º, went 1 light-year, turned 90º again, and then did this yet again, you should have traced a perfect square, and be back exactly where you started. If you aren’t, something is amiss!

 

Now it turns out that it we do this, we will indeed discover an error; but why? And how do we know this?

===================

Newton told us that a massive object in motion will continue to travel in a straight line, unless acted upon by external forces. Some people think that Einstein overturned this insight, but he didn’t; indeed he extended it: he said that the force of gravity is not actually a force, and thus objects falling under gravity are actually going in straight lines! Indeed this makes sense, as anyone ‘falling’ does indeed not sense any acceleration, but rather feels ‘weightless’. Thus they are not actually accelerating, they are going straight – in curved space.

Now anyone who has thrown a ball can see this is absurd on the face of it, but Einstein was serious, and he is right, from a certain perspective. The ball is not going in a straight line through ‘regular’ space, but is going on a straight path in a 4-d construct called ‘space-time’. Likewise, he would argue that the planets are tracing straight lines around the sun; and indeed the ‘parabola’ of a baseball is actually not a parabola, but a very small part of the enormous ellipse that would be traced in the baseball could fall though the earth and go into ‘orbit’ §.

Anyway, Einstein’s model says that light travels in straight lines, but we have seen that light bends when it passes near to the sun (this can most easily be tested during an eclipse) – so… if one of the sides of your ‘perfect square’ were to pass near the sun, it would also be bent and if you followed the above rule to draw the square, you would not end up where you started.

===================

Physicists have grown used to Einstein’s model, and better tests for the flatness of space have been developed. For example, if you drew a circle on the surface of a sphere, the area would not equal Πr2, but would be less. Likewise, in 3-D space, we could plot a sphere and then measure the volume and if it did not equal 4/3Πr3, we would know something was amiss.

So physicists have looked at how light bends, and how the planets move, and found out, amazingly (but predicted by Einstein) that the error in this spherical volume calculation is directly proportional to the mass of matter within the sphere – proving that the warpage in space is proportional to (and thus caused by) ‘mass’.  Thus mass warps space.

===================

MC Escher: 'Grid'

But is space really warped in some ‘extra’ dimension?

Well, this is a good question. Maybe it is some extra ‘spacial type’ dimension, but you could also look at time as a fourth dimension, and argue that this space is not ‘curved’ at all, but rather that space and time simply vary in density in different locations. I personally like this way of looking at it, it eliminates the need for some vague ‘extra dimension’, and therefore swiftly removes the possibility that space could be ‘closed’ or fold back on itself in this extra spacial dimension. Occam’s razor thus prefers the ‘density’ model!

Footnotes:

§. In Wikipedia, they state that balls bounce in perfect parabolas, but note they also mention a ‘uniform’ gravitation field, and it is well to remember that the earth gravitational field is not uniform, but radial. Thus I stand by my assertion that missiles follow elliptical paths just like planets and comets. Of course, an ellipse is a close relative of both the parabola and the hyperbola, so this is not really that dramatic.

Skeptics vs Deniers

There is a growing movement, grassroots in nature, but starting to connect, called the skeptics community.

Who exactly are they? Are they people who are starting to uncover the truth – that most world governments are a sham and that secret societies control our every move? Do they deny the holocaust and suspect 9/11 was a complex plot?

No.

A skeptic is merely someone who needs to be convinced of things through reason, rather than one who accepts things on some-one’s say-so.

Simple!

So what is a global warming ‘skeptic’?

Climate science is complex, and consensus opinion is that man’s activity has led to increased greenhouse gas emissions which are likely to reduce outgoing radiation and thus lead to a net shift upward in the temperature of the Earth’s delicate surface. Yes, there are other possible causes, yes, the models contain assumptions, and yes, some fools have fabricated data to look cool. It is also true that many respected scientists will not say it is a cast iron ‘fact’.

So that is the scene – and there seem to be a few types of stakeholders:

  • the ‘global warming denier’
  • the  ‘global warming skeptic’
  • the regular ‘skeptic’
  • and lastly, the gullible!

A ‘global warming denier’ has come to mean someone who does not think the evidence stacks up enough to warrant concern, or worse, thinks it is all a giant conspiracy.

A ‘global warming skeptic’ has come to be somewhat synonymous with a denier, but perhaps without the conspiracy angle. However, many are just people who are on the fence – they are often very smart, and don’t just believe what they are told, but on the other hand, they are easily misled, as there is just so much misinformation out there. They may be the ones who say “I heard the jury is out…” rather than actually looking at evidence.

Some legitimate scientists have foolishly allowed themselves to be given this label, just because they debate some small details (like the rate of heating, or the likely nature of socio-political impacts). These scientists are then lumped with deniers. Tough luck to them.

I found this is some random folder on the 'net. If it's yours, please let me know, I love it! Update: it looks like it may well be from thisisindexed.com - click it to link - nice one Jessica Hagy!

Now a true skeptic will weigh all evidence according to the following principles:

  • is it logical?
  • does it conflict with other strong theories? If so, is it strong enough warrant a change to your previous understanding?
  • is there independent corroboration?
  • do the proponents have a  proven track record (credibility)?
  • is there any incentive by stakeholders to twist the facts?

This describes most good scientists, so its not a bad thing.

In the case of global warming, most true skeptics who have looked closely at the evidence and weighed it appropriately, agree that there is real cause for concern.

But yes, we skeptics will always retain just a little doubt, because you just never know…

Energy Explained in One Page

Ok, so we all want to be good to the environment. The first step to doing this, as is often the case – is to understand the main characters in the story – and possibly the biggest character in the story in Energy.

However, energy is such a very vague concept, so where do you go to learn more? Do you have to do a physics course?

I don’t think so, and to test my theory, I have tried to explain energy as briefly as I can in this post.

Energy 101

Energy is what makes the world go round. Literally. Every neuron that sparks in your brain, every electron that fires down a wire, every molecule burning in a fire, carries with it a sort of momentum that it passes on like a baton in a complex relay race. The batons are flooding in all directions all around us and across the universe – they are energy and we have learned how to harness them.

The actual word “Energy” is a much abused term nowadays – because energy is used to represent such a disparate range of phenomena from heat to light to speed to weight, and because it seems to be able to change forms so readily, it is cannon fodder for pseudo-scientific and spiritual interpretation. However, you will be pleased to hear that it actually has a very clear (and consistent) nature.

I like to think of energy being a bit like money – it is a sort of currency that can be traded. It takes on various forms (dollars/pounds/swiss francs) and can be eventually cashed in to achieve something. However, just like money, once spent, it does not vanish. It simply moves on a new chapter in its life and may be reused indefinitely.

§Energy currencies:{1}Matter is energy(see footnotes) {2} Radiation {3} Chemical energy {4} Thermal (heat) energy {5} Compression energy {6} Kinetic (movement) energy {7} Electrical energy

To illustrate the point, let’s follow a ‘unit of energy’ through a visit to planet Earth to see what I mean. The [number] shows every time it changes currency (see the key on the right).

The energy starts off tied up in hydrogen atoms in the sun [1]. Suddenly, due to the immense pressure and heat, the nuclei of several atoms react to form a brand new helium atom, and a burst of radiation[2] is released. The radiation smashes into other nearby atoms heating them up so hot [4] that they glow, sending light [2] off into space. Several minutes pass in silence before the light bursts through the atmosphere and plunges down to the rainforest hitting a leaf. In the leaf the burst of power smashes a molecule of carbon dioxide and helps free the carbon to make food for the plant [3]. The plant may be eaten (giving food ‘Calories’), or may fall to the ground and settle and age for millions of years turning perhaps to coal. That coal may be dug up and burned to give heat [4] in a power station, boiling water to supply compressed steam [5] that may drive a turbine [6] which may be used to generate electricity [7] which we may then use in our homes to heat/light/move/cook or perhaps to recharge our mobile phone [3]. That energy will then be used to transmit microwaves when you make a call [2] which will mostly dissipate into the environment heating it (very) slightly [4]. Eventually the warmed earth radiates [2] this excess of heat off into the void where perhaps it will have another life…

This short story is testament to an enormous quantity of learning by our species, but there are some clear exclusions to be read into the story:

  • Energy fields (auras) or the energy lines in the body that conduct the “chi” (or life force) of Asian medical tradition
  • Energy lines on the Earth (aka Ley lines)
  • Negative or positive energy (as in positive or negative “vibes”)

These energy currencies relate to theories and beliefs that science has been unable to verify and thus they have no known “exchange rate”. Asking how many light bulbs can you power with your Chi is thus a nonsensical question, whereas it would not be for any scientifically supported form of energy. And since energy flows account for all actions in the universe, not being exchangeable would be rather limiting.

Where exactly is Energy kept?

This may sound like s strange question, we know Energy is kept in batteries, petrol tanks and chocolate chip cookies. But the question is, where exactly is it stored in those things?

Energy is stored in several ways:

  • as movement – any mass moving has energy by virtue of the movement, which is called Kinetic Energy
  • as matter – Einstein figured out that matter is just a form of energy, and the exchange rate is amazing – 1g = 90,000,000,000,000,000 joules (from E=mc^2)
  • as tension in force fields

That last one sounds a bit cryptic, but actually most of the energy we use is in this form –  petrol, food, batteries and even a raised hammer all store energy in what are essentially compressed (or stretched springs).

What is a force field? Why on earth did I have to bring that up?

All of space (even the interstellar vacuum) is permeated by force fields. The one we all know best is gravity – we know that if we lift a weight, we have to exert effort and that effort is then stored in that weight and can be recovered later by dropping it on your foot.

Gravity is only one of several force fields known to science. Magnetic fields are very similar – it takes energy to pull a magnet off the fridge , and so it is actually an energy store when kept away from the fridge.

The next force field is that created by electric charge (the electric field). For many years this was though to be a field all on its own, but a chap called Maxwell realised that electric fields and magnetic fields are in some senses two sides of the same coin, so physicists now talk of ‘electromagnetic’ fields. It turns out that electric energy (such as that stored in a capacitor) consists of tensions in this field, much like a raised weight is a tension in a gravity field. Perhaps surprisingly, light (as well as radio waves, microwaves and x-rays) are also energy stored in fluctuations of an energy field.

Much chemical energy is also stored in electric fields – for example, most atoms consist of positively charged nuclei and negatively charged electrons, and the further apart they are kept, the more energy they hold, just liked raised weights. As an electron is allowed to get closer to the nucleus, energy is released (generally as radiation, such as light – thus hot things glow).

The least well known force field is the strong ‘nuclear’ force. This is the forces that holds the subatomic particles (protons) together in the nucleus of atoms. Since the protons are all positively charged, they should want to repel each other, but something is keeping them at bay, and so physicists have inferred this force field must exist. It turns out their theory holds water, because if you can drag these protons a little bit apart, they will suddenly fly off with gusto. The strong nuclear force turns out to be bloody strong, but only works over a tiny distance. It rarely affects us as we rarely store energy with this energy field.

Now we understand force fields we can look at how molecules (petrol, oxygen, chocolate) store energy. All molecules are made of atoms connected to one other via various ‘bonds’ and these bonds are like springs. Different types of molecules have different amount of tension in these bonds – it turns out coal molecules, created millions of years ago with energy from the sun, are crammed full of tense bonds that are dying to re-arrnage to more relaxed configurations, which is exactly what happens when we apply oxygen and the little heat to start the reaction.

The complexity of the tensions in molecules are perhaps the most amazing in nature, as it is their re-arrangements that fuel life as we know it.

What exactly is Heat then?

You may have noticed that I did not include heat as a form of energy store above. But surely hot things are an energy store?

Yes, they are, but heat is actually just a sort of illusion. We use heat as a catch all term to describe the kinetic energy of the molecules and atoms. If you have a bottle of air, the temperature of the air is a direct consequence of the average speed of the molecules of gas jetting around bashing into one another.

As you heat the air, you are actually just increasing the speed of particles. If you compress the air, you may not increase their speed, but you will have more particles in the same volume, which also ‘feels’ hotter.

Solids are a little different – the atoms and molecules in solids do not have the freedom to fly around, so instead, they vibrate. It is like each molecule is constrained by elastic bands pulling in all directions. If the molecule is still, it is cold, but if it is bouncing around like a pinball, then it has kinetic energy, and feels hotter.

You can see from this viewpoint, that to talk of the temperature of an atom, or of a vacuum, is meaningless, because temperature is a macroscopic property of matter. On the other hand, you could technically argue that a flying bullet is red hot because it has so much kinetic energy…

Is Energy Reusable?

We as a species, have learned how to tap into flows of energy to get them to do our bidding. So big question: Will we use it all up?

Scientists have found that energy is pretty much indestructable – it is never “used-up”, it merely flows from one form into another. The problem is thus not that we will run out, but that we might foolishly convert it all into some unusable form.

Electricity is an example of really useful energy – we have machines that convert electricity into almost anything, whereas heat is only useful if you are cold, and light is only useful if you are in the dark.

Engineers also talk about the quality (or grade) of energy. An engineer would always prefer 1 litre of water 70 degrees warmer than room temperature, than 70 litres of water 1 degree warmer, even though these contain roughly the same embodied energy. You can use the hot water to boil an egg, or make tea, or you could mix it with 69 litres of room temperature water to heat it all by 1 degree. It is more flexible.

Unfortunately, most of the machines we use, turn good energy (electricity, petrol, light) into bad energy (usually “low grade heat”).

Why is low grade heat so bad? It turns out we have no decent machine to convert low grade heat into other forms of energy. In fact we cannot technically convert any forms of heat into energy unless we have something cold to hand which we are also willing to warm up; our machines can thus only extract energy by using hot an cold things together. A steam engine relies just as much on the environment that cools and condenses water vapour as it does on the coal its belly. Power stations rely on their cooling towers as much as their furnaces. It turns out that all our heat machines are stuck in this trap.

So, in summary, heat itself is not useful – it is temperature differences that we know how to harness, and the bigger the better.

This picture of energy lets us think differently about how we interact with energy. We have learned a few key facts:

  1. Energy is not destroyed, and cannot be totally used up – this should give us hope
  2. Energy is harnessed to do our dirty work, but tends to end up stuck in some ‘hard to use’ form

So all we need to do to save ourselves is:

  1. Re-use the same energy over and over
  2. by finding some way to extract energy from low grade heat

Alas, this is a harder nut to crack than fission power, so I am not holding my breath. It turns out that there is another annoying universal law that says that every time energy flows, it will somehow become less useful, like water running downhill. This is because energy can only flow one way: from something hot to something cold – thus once something hot and something cold meet and the temperature evens out, you have forever lost the useful energy you had.

It is as if we had a mountain range and were using avalanches to drive our engines. Not only will our mountains get shorter over time but our valleys will fill up too, and soon we will live on a flat plane and our engines will be silent.

The Big Picture

So the useful energy in the universe is being used up. Should we worry?

Yes and no.

Yes, you should worry because locally we are running out of easy sources of energy and will now have to start using sustainable ones. If we do not ramp up fast enough we will have catastrophic shortages.

No, should should no worry that we will run out, because there are sustainable sources – the sun pumps out so much more than we use, it is virtually limitless.

Oh, and yes again – because burning everything is messing up the chemistry of the atmosphere, which is also likely to cause catastrophe. Good news is that the solution to this is the same – most renewable energy sources do not have this unhappy side effect.

Oh, and in the really long term, yes we should worry again. All the energy in the universe will eventually convert to heat, and the heat will probably spread evenly throughout the universe, and even though all the energy will still be present and accounted for, it would be impossible to use and the universe would basically stop. Pretty dismal, but this is what many physicists believe: we all exist in the eddy currents of heat flows as the universe gradually heads for a luke-warm, and dead, equilibrium.

=============

Ok, so it was longer than a page, so sue me. If you liked this article, my first in a series on energy conservation, you might like my series on efficient motoring.

Please leave a comment, I seem to have very clued-up readers and always love know what you think!

=============

§ Footnotes:

[1] Matter is energy according the Einstein and the quantity relates to mass according to E=mc^2 (c is a constant equal to the speed of light).

[2] Radiation (like sunlight) is a flow of energy, and energy content relates the frequency according to E=hf (h is the Planck constant).

[3] Chemical energy – the most complex energy, a mixture of different tensions in nuclear and electromagnetic force fields.

[4] Thermal (heat) energy- this is really just a sneaky form of kinetic energy [6 below] – small particles moving and vibrating fast are sensed by us as heat.

[5] Compression (or tension) energy – while compressed air is again a sneaky form of kinetic energy [6], a compressed spring is different – it’s energy is more like chemical energy and is stored by creating tension in the force fields present in nature (gravity, electromagnetism and nuclear forces).

[6] Kinetic (movement) energy

[7] Electrical energy – this energy, like a compressed spring, is stored as stress in force fields, in this case electromagnetic force-fields.