Category Archives: Philosophy

The Art of Forgetting

There is a skill I have not yet heard taught, but that is invaluable: the ability to remember what it was like before you knew something.

For example, a good story teller needs to be able to put him or herself into the mind of their characters so that the ‘revelations’ are best timed – this requires putting oneself in the position of the character (and by extension the listener/reader) – of not knowing what you know (as the author), and reacting appropriately to each twist and turn of the plot.

Now it occurs to me, that when we remember our own past, we often forget that the person in the memory is not actually us; it was a past version of ourself, that does not know what we know – and should thus be given the same treatment the author gives their character.

Unfortunately, our mind is obsessed with the desire to ensure our memories are consistent with our self image and narrative, and thus when we look back on decisions we made we struggle to identify the true reasoning; we routinely select reasoning consistent with what we know today.

So it turns out, that to truly remember, we actually need to be able to forget!


Postscript: That said, it would be a useful to be able to selectively forget things temporarily; not just to write a good thriller, but to play around and find out which bits of my knowledge are responsible for which bits of my attitude…


Skeptics vs Deniers

There is a growing movement, grassroots in nature, but starting to connect, called the skeptics community.

Who exactly are they? Are they people who are starting to uncover the truth – that most world governments are a sham and that secret societies control our every move? Do they deny the holocaust and suspect 9/11 was a complex plot?


A skeptic is merely someone who needs to be convinced of things through reason, rather than one who accepts things on some-one’s say-so.


So what is a global warming ‘skeptic’?

Climate science is complex, and consensus opinion is that man’s activity has led to increased greenhouse gas emissions which are likely to reduce outgoing radiation and thus lead to a net shift upward in the temperature of the Earth’s delicate surface. Yes, there are other possible causes, yes, the models contain assumptions, and yes, some fools have fabricated data to look cool. It is also true that many respected scientists will not say it is a cast iron ‘fact’.

So that is the scene – and there seem to be a few types of stakeholders:

  • the ‘global warming denier’
  • the  ‘global warming skeptic’
  • the regular ‘skeptic’
  • and lastly, the gullible!

A ‘global warming denier’ has come to mean someone who does not think the evidence stacks up enough to warrant concern, or worse, thinks it is all a giant conspiracy.

A ‘global warming skeptic’ has come to be somewhat synonymous with a denier, but perhaps without the conspiracy angle. However, many are just people who are on the fence – they are often very smart, and don’t just believe what they are told, but on the other hand, they are easily misled, as there is just so much misinformation out there. They may be the ones who say “I heard the jury is out…” rather than actually looking at evidence.

Some legitimate scientists have foolishly allowed themselves to be given this label, just because they debate some small details (like the rate of heating, or the likely nature of socio-political impacts). These scientists are then lumped with deniers. Tough luck to them.

I found this is some random folder on the 'net. If it's yours, please let me know, I love it! Update: it looks like it may well be from - click it to link - nice one Jessica Hagy!

Now a true skeptic will weigh all evidence according to the following principles:

  • is it logical?
  • does it conflict with other strong theories? If so, is it strong enough warrant a change to your previous understanding?
  • is there independent corroboration?
  • do the proponents have a  proven track record (credibility)?
  • is there any incentive by stakeholders to twist the facts?

This describes most good scientists, so its not a bad thing.

In the case of global warming, most true skeptics who have looked closely at the evidence and weighed it appropriately, agree that there is real cause for concern.

But yes, we skeptics will always retain just a little doubt, because you just never know…

Energy Explained in One Page

Ok, so we all want to be good to the environment. The first step to doing this, as is often the case – is to understand the main characters in the story – and possibly the biggest character in the story in Energy.

However, energy is such a very vague concept, so where do you go to learn more? Do you have to do a physics course?

I don’t think so, and to test my theory, I have tried to explain energy as briefly as I can in this post.

Energy 101

Energy is what makes the world go round. Literally. Every neuron that sparks in your brain, every electron that fires down a wire, every molecule burning in a fire, carries with it a sort of momentum that it passes on like a baton in a complex relay race. The batons are flooding in all directions all around us and across the universe – they are energy and we have learned how to harness them.

The actual word “Energy” is a much abused term nowadays – because energy is used to represent such a disparate range of phenomena from heat to light to speed to weight, and because it seems to be able to change forms so readily, it is cannon fodder for pseudo-scientific and spiritual interpretation. However, you will be pleased to hear that it actually has a very clear (and consistent) nature.

I like to think of energy being a bit like money – it is a sort of currency that can be traded. It takes on various forms (dollars/pounds/swiss francs) and can be eventually cashed in to achieve something. However, just like money, once spent, it does not vanish. It simply moves on a new chapter in its life and may be reused indefinitely.

§Energy currencies:{1}Matter is energy(see footnotes) {2} Radiation {3} Chemical energy {4} Thermal (heat) energy {5} Compression energy {6} Kinetic (movement) energy {7} Electrical energy

To illustrate the point, let’s follow a ‘unit of energy’ through a visit to planet Earth to see what I mean. The [number] shows every time it changes currency (see the key on the right).

The energy starts off tied up in hydrogen atoms in the sun [1]. Suddenly, due to the immense pressure and heat, the nuclei of several atoms react to form a brand new helium atom, and a burst of radiation[2] is released. The radiation smashes into other nearby atoms heating them up so hot [4] that they glow, sending light [2] off into space. Several minutes pass in silence before the light bursts through the atmosphere and plunges down to the rainforest hitting a leaf. In the leaf the burst of power smashes a molecule of carbon dioxide and helps free the carbon to make food for the plant [3]. The plant may be eaten (giving food ‘Calories’), or may fall to the ground and settle and age for millions of years turning perhaps to coal. That coal may be dug up and burned to give heat [4] in a power station, boiling water to supply compressed steam [5] that may drive a turbine [6] which may be used to generate electricity [7] which we may then use in our homes to heat/light/move/cook or perhaps to recharge our mobile phone [3]. That energy will then be used to transmit microwaves when you make a call [2] which will mostly dissipate into the environment heating it (very) slightly [4]. Eventually the warmed earth radiates [2] this excess of heat off into the void where perhaps it will have another life…

This short story is testament to an enormous quantity of learning by our species, but there are some clear exclusions to be read into the story:

  • Energy fields (auras) or the energy lines in the body that conduct the “chi” (or life force) of Asian medical tradition
  • Energy lines on the Earth (aka Ley lines)
  • Negative or positive energy (as in positive or negative “vibes”)

These energy currencies relate to theories and beliefs that science has been unable to verify and thus they have no known “exchange rate”. Asking how many light bulbs can you power with your Chi is thus a nonsensical question, whereas it would not be for any scientifically supported form of energy. And since energy flows account for all actions in the universe, not being exchangeable would be rather limiting.

Where exactly is Energy kept?

This may sound like s strange question, we know Energy is kept in batteries, petrol tanks and chocolate chip cookies. But the question is, where exactly is it stored in those things?

Energy is stored in several ways:

  • as movement – any mass moving has energy by virtue of the movement, which is called Kinetic Energy
  • as matter – Einstein figured out that matter is just a form of energy, and the exchange rate is amazing – 1g = 90,000,000,000,000,000 joules (from E=mc^2)
  • as tension in force fields

That last one sounds a bit cryptic, but actually most of the energy we use is in this form –  petrol, food, batteries and even a raised hammer all store energy in what are essentially compressed (or stretched springs).

What is a force field? Why on earth did I have to bring that up?

All of space (even the interstellar vacuum) is permeated by force fields. The one we all know best is gravity – we know that if we lift a weight, we have to exert effort and that effort is then stored in that weight and can be recovered later by dropping it on your foot.

Gravity is only one of several force fields known to science. Magnetic fields are very similar – it takes energy to pull a magnet off the fridge , and so it is actually an energy store when kept away from the fridge.

The next force field is that created by electric charge (the electric field). For many years this was though to be a field all on its own, but a chap called Maxwell realised that electric fields and magnetic fields are in some senses two sides of the same coin, so physicists now talk of ‘electromagnetic’ fields. It turns out that electric energy (such as that stored in a capacitor) consists of tensions in this field, much like a raised weight is a tension in a gravity field. Perhaps surprisingly, light (as well as radio waves, microwaves and x-rays) are also energy stored in fluctuations of an energy field.

Much chemical energy is also stored in electric fields – for example, most atoms consist of positively charged nuclei and negatively charged electrons, and the further apart they are kept, the more energy they hold, just liked raised weights. As an electron is allowed to get closer to the nucleus, energy is released (generally as radiation, such as light – thus hot things glow).

The least well known force field is the strong ‘nuclear’ force. This is the forces that holds the subatomic particles (protons) together in the nucleus of atoms. Since the protons are all positively charged, they should want to repel each other, but something is keeping them at bay, and so physicists have inferred this force field must exist. It turns out their theory holds water, because if you can drag these protons a little bit apart, they will suddenly fly off with gusto. The strong nuclear force turns out to be bloody strong, but only works over a tiny distance. It rarely affects us as we rarely store energy with this energy field.

Now we understand force fields we can look at how molecules (petrol, oxygen, chocolate) store energy. All molecules are made of atoms connected to one other via various ‘bonds’ and these bonds are like springs. Different types of molecules have different amount of tension in these bonds – it turns out coal molecules, created millions of years ago with energy from the sun, are crammed full of tense bonds that are dying to re-arrnage to more relaxed configurations, which is exactly what happens when we apply oxygen and the little heat to start the reaction.

The complexity of the tensions in molecules are perhaps the most amazing in nature, as it is their re-arrangements that fuel life as we know it.

What exactly is Heat then?

You may have noticed that I did not include heat as a form of energy store above. But surely hot things are an energy store?

Yes, they are, but heat is actually just a sort of illusion. We use heat as a catch all term to describe the kinetic energy of the molecules and atoms. If you have a bottle of air, the temperature of the air is a direct consequence of the average speed of the molecules of gas jetting around bashing into one another.

As you heat the air, you are actually just increasing the speed of particles. If you compress the air, you may not increase their speed, but you will have more particles in the same volume, which also ‘feels’ hotter.

Solids are a little different – the atoms and molecules in solids do not have the freedom to fly around, so instead, they vibrate. It is like each molecule is constrained by elastic bands pulling in all directions. If the molecule is still, it is cold, but if it is bouncing around like a pinball, then it has kinetic energy, and feels hotter.

You can see from this viewpoint, that to talk of the temperature of an atom, or of a vacuum, is meaningless, because temperature is a macroscopic property of matter. On the other hand, you could technically argue that a flying bullet is red hot because it has so much kinetic energy…

Is Energy Reusable?

We as a species, have learned how to tap into flows of energy to get them to do our bidding. So big question: Will we use it all up?

Scientists have found that energy is pretty much indestructable – it is never “used-up”, it merely flows from one form into another. The problem is thus not that we will run out, but that we might foolishly convert it all into some unusable form.

Electricity is an example of really useful energy – we have machines that convert electricity into almost anything, whereas heat is only useful if you are cold, and light is only useful if you are in the dark.

Engineers also talk about the quality (or grade) of energy. An engineer would always prefer 1 litre of water 70 degrees warmer than room temperature, than 70 litres of water 1 degree warmer, even though these contain roughly the same embodied energy. You can use the hot water to boil an egg, or make tea, or you could mix it with 69 litres of room temperature water to heat it all by 1 degree. It is more flexible.

Unfortunately, most of the machines we use, turn good energy (electricity, petrol, light) into bad energy (usually “low grade heat”).

Why is low grade heat so bad? It turns out we have no decent machine to convert low grade heat into other forms of energy. In fact we cannot technically convert any forms of heat into energy unless we have something cold to hand which we are also willing to warm up; our machines can thus only extract energy by using hot an cold things together. A steam engine relies just as much on the environment that cools and condenses water vapour as it does on the coal its belly. Power stations rely on their cooling towers as much as their furnaces. It turns out that all our heat machines are stuck in this trap.

So, in summary, heat itself is not useful – it is temperature differences that we know how to harness, and the bigger the better.

This picture of energy lets us think differently about how we interact with energy. We have learned a few key facts:

  1. Energy is not destroyed, and cannot be totally used up – this should give us hope
  2. Energy is harnessed to do our dirty work, but tends to end up stuck in some ‘hard to use’ form

So all we need to do to save ourselves is:

  1. Re-use the same energy over and over
  2. by finding some way to extract energy from low grade heat

Alas, this is a harder nut to crack than fission power, so I am not holding my breath. It turns out that there is another annoying universal law that says that every time energy flows, it will somehow become less useful, like water running downhill. This is because energy can only flow one way: from something hot to something cold – thus once something hot and something cold meet and the temperature evens out, you have forever lost the useful energy you had.

It is as if we had a mountain range and were using avalanches to drive our engines. Not only will our mountains get shorter over time but our valleys will fill up too, and soon we will live on a flat plane and our engines will be silent.

The Big Picture

So the useful energy in the universe is being used up. Should we worry?

Yes and no.

Yes, you should worry because locally we are running out of easy sources of energy and will now have to start using sustainable ones. If we do not ramp up fast enough we will have catastrophic shortages.

No, should should no worry that we will run out, because there are sustainable sources – the sun pumps out so much more than we use, it is virtually limitless.

Oh, and yes again – because burning everything is messing up the chemistry of the atmosphere, which is also likely to cause catastrophe. Good news is that the solution to this is the same – most renewable energy sources do not have this unhappy side effect.

Oh, and in the really long term, yes we should worry again. All the energy in the universe will eventually convert to heat, and the heat will probably spread evenly throughout the universe, and even though all the energy will still be present and accounted for, it would be impossible to use and the universe would basically stop. Pretty dismal, but this is what many physicists believe: we all exist in the eddy currents of heat flows as the universe gradually heads for a luke-warm, and dead, equilibrium.


Ok, so it was longer than a page, so sue me. If you liked this article, my first in a series on energy conservation, you might like my series on efficient motoring.

Please leave a comment, I seem to have very clued-up readers and always love know what you think!


§ Footnotes:

[1] Matter is energy according the Einstein and the quantity relates to mass according to E=mc^2 (c is a constant equal to the speed of light).

[2] Radiation (like sunlight) is a flow of energy, and energy content relates the frequency according to E=hf (h is the Planck constant).

[3] Chemical energy – the most complex energy, a mixture of different tensions in nuclear and electromagnetic force fields.

[4] Thermal (heat) energy- this is really just a sneaky form of kinetic energy [6 below] – small particles moving and vibrating fast are sensed by us as heat.

[5] Compression (or tension) energy – while compressed air is again a sneaky form of kinetic energy [6], a compressed spring is different – it’s energy is more like chemical energy and is stored by creating tension in the force fields present in nature (gravity, electromagnetism and nuclear forces).

[6] Kinetic (movement) energy

[7] Electrical energy – this energy, like a compressed spring, is stored as stress in force fields, in this case electromagnetic force-fields.

Confessions of Scientific Atheist

The Evolutionary theory of Natural Selection makes extraordinary claims. It explains the ability of creatures to convert sunlight to useful energy, to spin silk, to metabolise sulfurous rock – and much more besides.

Such amazing feats in nature require an amazing explanation. The existence of a God is very helpful in this regard; after all, humans have designed diesel cars and digital computers, so why couldn’t an entity with God’s power and talent create all the nature we see?

The trouble many people have with Natural Selection, is that while it can clearly explain some biology, using it to explain away practically all biology (and psychology, language, culture, etc.)  is an extrapolation – and a big one at that.

Why do scientists allow such an extrapolation? Surely this is arrogance?


Thinking about this, I have an proposition…

If you come from the premise that there is nothing outside of nature (see my recent post), then it comes easily. If the God option is written off a priori, we have no other logical option than to expect that the gaps in our knowledge of evolution will be filled in eventually. This allows us to sleep at night with the extraordinary.

If you start from the premise that there is a God, then this will strike you are arrogant.


The constant supply of greater details, filling in the gaps, gives encouragement to those who feel the theory is right (see God of the Gaps). It’s a bit like looking for Nessy – we can’t do a Star-Trek style ‘scan for lifeforms’ to be sure she does not exist, but the more we search the less likely she is to exist.

Of course, while evolution explaining away the wondrous variety in life does not prove there is no God, it sure makes God less necessary, and less necessarily capable.

Overlapping Magisteria

Those who say science and religion are mutually exclusive are working from the philosophical premise that there can be something outside of nature.

Those who claim that religion can be scientifically investigated, come from the philosophical premise that there is nothing outside of nature.

As neither position is superior one cannot use logic to assign greater truth.

However, the claim that there is anything beyond nature (i.e. supernatural) is the more extraordinary claim, and thus carries with it the onus to justify and explain how to reach this conclusion.

The futility of being outside of nature:

If religion is truly outside of nature it can have no measurable effect on it. If it has no measurable effect then, even if existant, it would be fair to say it couldn’t be detected by science – but then neither could it be detected by the clergy.

Thus in a non-overlapping model, the benefits of a benevolent God, such as good crops, good weather, good luck, healing or charity are impossible, as they are generally detectable.

I guess you could argue that God goes to the trouble to disguise the causes for His blessings, but why is he so afraid to show it was the result of your good faith? This argument gets a little stretched once the solutions to that are proposed. It is similar to the argument that God planted the fossils in the order of their evolutionary development to fool us into thinking that life evolved…

What exactly is ‘science’?

I used to think science was the practice of the scientific method; i.e. you propose a hypothesis, you develop a test of the hypothesis, execute it and prove the hypothesis.

That worked for me until the end of high school.

At university, I was a true nerd. I read all my textbooks cover to cover (mainly because as I was too shy for girls and too poor for booze). During this time, the definition above started to fail. So much of the science was maths, statistics, observation, pattern recognition, logic and quite a bit of rote learning. Not all of it fitted into my definition of science. I became a fan of a new definition: science is the study of the nature of reality .

But then I did post-grad, and I realised that not much in science is ‘proven’ (I guess this is the point of post grad study). Evolution, for example, is not proven. That the sun revolves around the earth is not ‘proven’. I discovered that the only things that could be proven were ‘ideas’ about ‘other ideas’. Bear with me on this one.

Let us say we define the number system – this is an ‘idea’ or conceptual construction. Within this construction we can ‘prove’ that one and one is two. Because we ‘made’ the system, with rules, then we can make factual and true statements about it. We can’t do this about the real world – we cannot say anything with absolute certainly because we rely on flaky inputs like our own highly fallible perception.

It’s like that old chestnut: how can you be sure you are not living in a giant simulation? Of course you can argue that it is pretty unlikely and I would agree, and right there we have a clue to a better definition of science.

It turns out that much of modern science deals in ‘likelihood’ and ‘probability’ rather than proof and certainty. For example, we can say that the theory of evolution is very likely to be more-or-less right, as there is a lot of corroborating evidence. Science cannot be run like a law court – where the prosecution only need to reach a threshold of reasonable doubt to ‘prove’ someone guilty.

Aside for nerds: Science says you can use logic to prove things absolutely, but logic only works with ideas, and there is a breakdown between ideas and reality, so one can never prove things in reality. So it is thoroughly wrong for a court to say that someone has been proven guilty. The courts use this language as a convenience, to “draw a line under” a case as they have not found a moral way to dole out punishments based on probabilities. Imagine a world in which a murder suspect gets a 5 year sentence because the was a 20% chance he was guilty! Sports referees often operate in this decisive way, perhaps because it saves a lot of arguing!

Anyway, good science cannot just give up and say once there is consensus something passes from theory to fact. This is sloppy. We have to keep our options open – forever.

Think for example of Newton’s Laws of Motion. They are called ‘Laws’ because the scientific community had so much faith in them they passed from theory (or a proposed model) to accepted fact. But they were then found wrong. Strange that we persist in calling them laws!

It took Einstein’s courage (and open mindedness) to try out theories that dispensed with a key plank of the laws – that time was utterly inflexible and completely constant and reliable.

So it is that the canon of scientific knowledge has become a complex web of evidence and theories that attempt to ‘best fit’ the evidence.

Alas, there are still many propositions that many so-called scientists would claim are fact or at least ‘above reproach’. Evolution is attacked (rather pathetically), but the defenders would do well to take care before they call it ‘fact’. It is not fact, it is a superbly good explanation for the evidence, which has yet to fail a test of its predictions. So it is very very likely to be right, but it cannot be said to be fact.

This is not just a point of pedantry (though I am a bit of a pedant) – it is critical to keep this in mind as it is the key to improving our model.

Two great examples of models people forget are still in flux…

1) The big bang theory

2) Quantum theory

I will not go into global warming here though it is tempting. That is one where it doesn’t even matter if it is fact, because game theory tells you that either way, we better stop making CO2 urgently.

Back to the big bang.

I heard on the Skeptic’s Guide podcast today about an NSF questionnaire that quizzed people about whether they believed the universe was started with a massive explosion, and they tried to paint the picture that if you didn’t believe that, then you were ignorant of science. This annoyed me, because the big bang theory is now too often spoken of as if it were fact. Yes, the theory contributes viable explanations for red-shifted pulsars, background radiation, etc, etc, but people are quick to forget that it is an extrapolation relying on a fairly tall pile of suppositions.

I am not saying it is wrong, all I am saying is that it would be crazy to stop exploring other possibilities at this point.

You get a feeling for the sort of doubts you should have from the following thought experiment:

Imagine you are a photon born in the big bang. You have no mass, so you cannot help but travel at ‘light speed’. But being an obedient photon, you obey the contractions in the Lorentz equations to the letter, and time thus cannot pass for you. However, you are minding your own business one day when suddenly you zoom down toward planet earth and head straight into a big radiotelescope. Scientists analyse you and declare that you are background radiation dating from the big bang and that you have been travelling for over 13 billion years (they know this because they can backtrack the expansion of the universe). Only trouble is, that for you, no time has passed, so for you, the universe is still new. Who is right? What about a particle that was travelling at 0.999 x the speed of light since the big bang? For it, the universe is some other intermediate age. So how old is the universe, really?

This reminds us of the fundamental proposition of relatively – time is like a gooey compressible stretchable mess, and so is space, so the distance across the universe may be 13.5 billion light years, or it might be a micron (how it felt to the photon). It all depends on your perspective. It is much like the statement that the sun does not revolve around the earth and that it is the other way around. No! The sun does revolve a round the earth. You can see it clearly does. From our perspective at least.

Now, quantum theory.

Where do I start? String theory? Entanglement? Please.

The study of forces, particles, EM radiation and the like is the most exciting part of science. But being so complex, so mysterious, so weird and counter intuitive, it is super vulnerable to abuse.

Most people have no idea how to judge the merits of quantum theories. Physicists are so deep in there, they have little time (or desire or capability) to explain themselves. They also love the mystique.

I do not want to ingratiate myself with physicists, so I will add that the vast majority have complete integrity. They do want to understand and then share. However, I have been working in the field for long enough to know that there are weaknesses, holes and downright contradictions in the modern theory that are often underplayed. In fact these weaknesses are what make the field so attractive to people like me, but is also a dirty little secret.

The fact is that the three forces (weak nuclear, strong nuclear and magnetic) have not been explained anything like as well as gravity has (by relativity). And don’t get me started on quantum gravity.


Anyway, thinking about all these issues, I concluded that science was (definition #3) the grand (platonic) model we are building of reality, ever evolving to best fit our observations.

My man, Plato

That works well for me. However, I recently came across a totally different definition for science:

# 4) “Science is a tool to help make the subjective objective.”

OK I paraphrased it to make it more snappy. It was really a discussion about how science was developed to overcome the fallibility of the human mind. Examples of weaknesses it needs to overcome are:

  1. The way our perception is filtered by preconceptions
  2. How we see pattern where there is none
  3. How we select evidence to match our opinion (confirmation bias)
  4. How we  read too much into anecdotal evidence
  5. etc etc.

I could go on. So ‘science’ is the collection of tricks we use to overcome our weaknesses.

I like this definition. We are all going about, and in our heads we are building our model of the world… and its time for an audit!