Category Archives: The scientific method

What exactly is temperature? Ever wondered?

We take it for granted. We understand it. It is obvious what temperature is. Cold, warm, hot…obvious.

But how many of us have asked the next question: what is the real difference between a hot stone and a cold one? The answer is interesting and helps us to realise that measuring temperature is much trickier than we tend to suppose.

Over many hundreds of years, many clever people have devised lots of experiments to understand what temperature is, I hope in this article to round up the facts!

Temperature and Energy

For much of history, there were only a few sources of heat – the sun, fire, lava and of course the warmth of living creatures.

People were puzzled by what created it, but it was immediately obvious that it had one consistency – whenever it had the chance, it flowed – put something hot next to something cold, and the heat would flow.

Of course you could argue that it was the ‘cold’ that flowed (the other way), but there were no obvious sources of ‘cold’. While ice was clearly cold, it was not a sustainable ‘source’ of cold the way a fire was.

It was also noted that heat melted things – like fat or butter and that it make some liquids (like molasses) thinner. It could even boil water and make it ‘vanish’. The mechanisms for these were unknown and a source of fascination for early scientists.

Early experimenters noticed that gases would increase in volume upon heating, and that compressing gases would cause them to heat up. They also investigated other sources of heat, like friction, (rubbing your hands together).

It was the work with gas that led to the big breakthrough. Boyle and Hooke, as well as Edme Marriotte, working in the 17th century, realized that the temperature of a gas would increase consistently with pressure, and like-wise, decrease consistently with pressure. This sounds unremarkable, until you note that you can only decrease pressure so much…

Once you have a vacuum (no pressure), you should have ‘no temperature’. Thus their observations implied that there really was a limit to how cold things could get, and predicted it was around -275 Celsius. They were of course unable to cool anything that far simply by expanding it because heat always flows into cold things, so to achieve this you need much better insulation than they had available.

So they had a big clue in the search to understand what temperature is, but still no explanation.

It took until 1738 until another great scientist moved us forward. Daniel Bernoulli realised you could use Newton’s (relatively new) laws to derive Boyle’s temperature-pressure relationship. He basically asked: what if gas was made of a large number of very small billiard balls flying around crashing into everything? What if pressure was just the result of all these collisions? Using this theory he realised, for the first time I think, what temperature truly is.

Source: Wikimedia Commons

It turns out that his model equated temperature with the speed of the billiard balls. A hot gas only differs from a cold gas in the speed of the molecules flying around. Faster molecules crash with more momentum and thus impart more pressure. Squashing the gas into a smaller volume does not give them more speed, but means more collisions each second, so higher pressure.

This is a pretty serious finding. It basically says ‘there is no such thing as temperature’. There is only lots of little balls flying around, and their number and speed dictate the pressure they exert, and there is no ‘temperature’.

If we put a thermometer into the gas, what is it detecting then? Great question.

It turns out that solids are also made of lots of balls, except, instead of being free to fly around, they are trapped in a matrix. When a solid is exposed to a hot gas,  it is bombarded by fast flying atoms. When a solid atom is hit, instead of flying off, it starts to vibrate, like a ball constrained by a network of springs.

So the ‘temperature of a solid is also a measure of speed of motion, but rather than linear speed it’s a measure of the speed of vibration. This makes a lot of sense – as the solid gets hotter, the balls are going literally ‘ballistic’ and eventually have enough speed to break the shackles of the matrix (aka melting).

Source: Wikimedia Commons

So this model of heat as ‘movement’ not only explains how gases exert pressure, but also explains how heat flows (through molecular collisions) and why things melt or vaporise.

More importantly, it shows that temperature is really just a symptom of another, more familiar, sort of energy – movement (or kinetic) energy.

Energy is a whole story of its own, but we can see now how energy and temperature relate – and how we can use energy to make things hot and cold.

Making Things Hot

There are many easy ways to make things hot. Electricity is a very convenient tool for heating – it turns out that when electric current flows, the torrent of electrons cannot help but buffet the atoms in the wire, and as they are not free to fly away, they just vibrate ever faster, ‘heating’ up.

Another way to heat things is with fire. Fire is just a chemical reaction – many types of molecules (like methane, or alcohol) contain a lot of ‘tension’, that is to say, they are like loaded springs just waiting to go off. Other molecules (often oxygen)  hold the ‘key’ to unlocking the spring, and when the springs go off, as you can imagine, it is like a room full of mousetraps and ping-pong balls – and all that motion – means heat.

[youtube=http://www.youtube.com/watch?v=Pmy5fivI_4U]

Making Things Cold

Manipulating energy flows to make things cold is much trickier.

One way it to just put the thing you want to cool in a cold environment – like the north pole. But what if you want to make something colder than its surroundings?

Well there is a way. We learned earlier that gases  get hot when compressed – it turns out they do the opposite when decompressed or ‘vented’. This is the principle that makes the spray from aerosol cans (deodorant, lighter fluid, etc) cold. So how can we use this? First we use a compressor to compress a gas (most any gas will do); in the process it will warm up, then you let it cool down by contacting it with ambient air (through a long thin copper tube, but keeping it compressed), then decompress it again – hey presto, it is cold! Pump this cold gas through another copper tube, inside a box, and it will cool the air in the box – and hey presto, you have a refrigerator.

Measuring Temperature

Before we had thermometers, temperature was generally estimated by touch.

However this is where temperature gets tricky. Because the temperature we feel, when we put our hand on the roof of a car is not really the temperature of the car, it’s really the measure of energy flow (into our hand), which relates to the temperature, but also relates to the conductivity of the car.

This is why hot metal feels hotter than hot wood, why cold metal feels colder than cold wood – the metal, if at a different temperature to your hand, is able to move more heat into you (or take more heat away) faster than wood can. Thus our sense of temperature is easily fooled.

The ‘wind-chill factor’ is another way we are fooled – we generally walk around with cloths on, and even without clothes we have some body hair – therefore, we usually carry a thin layer of air around with us that is nearly the same temperature as we are. This helps us when it is cold and when it is hot – however, when the wind blows it rips this layer up and supplies fresh air to our skin – making us feel the temperature more than usual. Also, because our skin can be damp, there can be evaporative effects which can actually cool you below the air temperature.

Scientists have long known that we cannot trust ourselves to measure temperature, so over the ages many tricks have been developed – can the object boil water? Can it freeze water? A long list of milestone temperatures was developed and essential knowledge for early scientists – until the development of the lowly thermometer.

It was noted that, like gases, solids and liquids also expand upon heating. This makes intuitive sense if you think of hot molecules as violently vibrating – they push one another away, or at least if the charge  (electric charge is what holds these things together) is spread just a little thinner, adjacent molecules will have slightly weaker bonds.

The expansion of liquids may only be very slight, and if you have a big volume of liquid in a cup, the height in the cup will change only very slightly, but if its in a bottle with a narrow neck, the small extra volume makes a bigger difference to the level. This principle is used in a thermometer – it’s just a bottle with a very narrow and long neck. The bigger the volume and the narrower the neck, the more sensitive the thermometer. Of course the glass also expands, so it is important to calibrate the thermometer – put it in ice water, mark the liquid level – then put it in boiling water and mark the new level. Then divide the distance between these marks into 100 divisions – and hey presto! you have a thermometer calibrated to the centi (hundred) grade (aka Celsius) scale. Now you know where that came from!

=================

So that is temperature explained in a nutshell.  If you enjoyed this article you may enjoy my related article on energy.

How to prove that space is curved…

Question: if you lived in flatland (a 2-d world), how could you tell if the land was curved in the third dimension?

Answer: geometry!

It turns out many of the mathematical rules we learned at school ‘fall apart’ if the working surface is curved. For example, can you draw a square on the surface of a sphere? No!

So can we use this insight to tell if our 3-d world is curved in a mysterious fourth dimension? Yes!

If we set off from earth, went in straight line for, say 1 light-year, then turned 90º, went 1 light-year, turned 90º again, and then did this yet again, you should have traced a perfect square, and be back exactly where you started. If you aren’t, something is amiss!

 

Now it turns out that it we do this, we will indeed discover an error; but why? And how do we know this?

===================

Newton told us that a massive object in motion will continue to travel in a straight line, unless acted upon by external forces. Some people think that Einstein overturned this insight, but he didn’t; indeed he extended it: he said that the force of gravity is not actually a force, and thus objects falling under gravity are actually going in straight lines! Indeed this makes sense, as anyone ‘falling’ does indeed not sense any acceleration, but rather feels ‘weightless’. Thus they are not actually accelerating, they are going straight – in curved space.

Now anyone who has thrown a ball can see this is absurd on the face of it, but Einstein was serious, and he is right, from a certain perspective. The ball is not going in a straight line through ‘regular’ space, but is going on a straight path in a 4-d construct called ‘space-time’. Likewise, he would argue that the planets are tracing straight lines around the sun; and indeed the ‘parabola’ of a baseball is actually not a parabola, but a very small part of the enormous ellipse that would be traced in the baseball could fall though the earth and go into ‘orbit’ §.

Anyway, Einstein’s model says that light travels in straight lines, but we have seen that light bends when it passes near to the sun (this can most easily be tested during an eclipse) – so… if one of the sides of your ‘perfect square’ were to pass near the sun, it would also be bent and if you followed the above rule to draw the square, you would not end up where you started.

===================

Physicists have grown used to Einstein’s model, and better tests for the flatness of space have been developed. For example, if you drew a circle on the surface of a sphere, the area would not equal Πr2, but would be less. Likewise, in 3-D space, we could plot a sphere and then measure the volume and if it did not equal 4/3Πr3, we would know something was amiss.

So physicists have looked at how light bends, and how the planets move, and found out, amazingly (but predicted by Einstein) that the error in this spherical volume calculation is directly proportional to the mass of matter within the sphere – proving that the warpage in space is proportional to (and thus caused by) ‘mass’.  Thus mass warps space.

===================

MC Escher: 'Grid'

But is space really warped in some ‘extra’ dimension?

Well, this is a good question. Maybe it is some extra ‘spacial type’ dimension, but you could also look at time as a fourth dimension, and argue that this space is not ‘curved’ at all, but rather that space and time simply vary in density in different locations. I personally like this way of looking at it, it eliminates the need for some vague ‘extra dimension’, and therefore swiftly removes the possibility that space could be ‘closed’ or fold back on itself in this extra spacial dimension. Occam’s razor thus prefers the ‘density’ model!

Footnotes:

§. In Wikipedia, they state that balls bounce in perfect parabolas, but note they also mention a ‘uniform’ gravitation field, and it is well to remember that the earth gravitational field is not uniform, but radial. Thus I stand by my assertion that missiles follow elliptical paths just like planets and comets. Of course, an ellipse is a close relative of both the parabola and the hyperbola, so this is not really that dramatic.

Skeptics vs Deniers

There is a growing movement, grassroots in nature, but starting to connect, called the skeptics community.

Who exactly are they? Are they people who are starting to uncover the truth – that most world governments are a sham and that secret societies control our every move? Do they deny the holocaust and suspect 9/11 was a complex plot?

No.

A skeptic is merely someone who needs to be convinced of things through reason, rather than one who accepts things on some-one’s say-so.

Simple!

So what is a global warming ‘skeptic’?

Climate science is complex, and consensus opinion is that man’s activity has led to increased greenhouse gas emissions which are likely to reduce outgoing radiation and thus lead to a net shift upward in the temperature of the Earth’s delicate surface. Yes, there are other possible causes, yes, the models contain assumptions, and yes, some fools have fabricated data to look cool. It is also true that many respected scientists will not say it is a cast iron ‘fact’.

So that is the scene – and there seem to be a few types of stakeholders:

  • the ‘global warming denier’
  • the  ‘global warming skeptic’
  • the regular ‘skeptic’
  • and lastly, the gullible!

A ‘global warming denier’ has come to mean someone who does not think the evidence stacks up enough to warrant concern, or worse, thinks it is all a giant conspiracy.

A ‘global warming skeptic’ has come to be somewhat synonymous with a denier, but perhaps without the conspiracy angle. However, many are just people who are on the fence – they are often very smart, and don’t just believe what they are told, but on the other hand, they are easily misled, as there is just so much misinformation out there. They may be the ones who say “I heard the jury is out…” rather than actually looking at evidence.

Some legitimate scientists have foolishly allowed themselves to be given this label, just because they debate some small details (like the rate of heating, or the likely nature of socio-political impacts). These scientists are then lumped with deniers. Tough luck to them.

I found this is some random folder on the 'net. If it's yours, please let me know, I love it! Update: it looks like it may well be from thisisindexed.com - click it to link - nice one Jessica Hagy!

Now a true skeptic will weigh all evidence according to the following principles:

  • is it logical?
  • does it conflict with other strong theories? If so, is it strong enough warrant a change to your previous understanding?
  • is there independent corroboration?
  • do the proponents have a  proven track record (credibility)?
  • is there any incentive by stakeholders to twist the facts?

This describes most good scientists, so its not a bad thing.

In the case of global warming, most true skeptics who have looked closely at the evidence and weighed it appropriately, agree that there is real cause for concern.

But yes, we skeptics will always retain just a little doubt, because you just never know…

Energy Explained in One Page

Ok, so we all want to be good to the environment. The first step to doing this, as is often the case – is to understand the main characters in the story – and possibly the biggest character in the story in Energy.

However, energy is such a very vague concept, so where do you go to learn more? Do you have to do a physics course?

I don’t think so, and to test my theory, I have tried to explain energy as briefly as I can in this post.

Energy 101

Energy is what makes the world go round. Literally. Every neuron that sparks in your brain, every electron that fires down a wire, every molecule burning in a fire, carries with it a sort of momentum that it passes on like a baton in a complex relay race. The batons are flooding in all directions all around us and across the universe – they are energy and we have learned how to harness them.

The actual word “Energy” is a much abused term nowadays – because energy is used to represent such a disparate range of phenomena from heat to light to speed to weight, and because it seems to be able to change forms so readily, it is cannon fodder for pseudo-scientific and spiritual interpretation. However, you will be pleased to hear that it actually has a very clear (and consistent) nature.

I like to think of energy being a bit like money – it is a sort of currency that can be traded. It takes on various forms (dollars/pounds/swiss francs) and can be eventually cashed in to achieve something. However, just like money, once spent, it does not vanish. It simply moves on a new chapter in its life and may be reused indefinitely.

§Energy currencies:{1}Matter is energy(see footnotes) {2} Radiation {3} Chemical energy {4} Thermal (heat) energy {5} Compression energy {6} Kinetic (movement) energy {7} Electrical energy

To illustrate the point, let’s follow a ‘unit of energy’ through a visit to planet Earth to see what I mean. The [number] shows every time it changes currency (see the key on the right).

The energy starts off tied up in hydrogen atoms in the sun [1]. Suddenly, due to the immense pressure and heat, the nuclei of several atoms react to form a brand new helium atom, and a burst of radiation[2] is released. The radiation smashes into other nearby atoms heating them up so hot [4] that they glow, sending light [2] off into space. Several minutes pass in silence before the light bursts through the atmosphere and plunges down to the rainforest hitting a leaf. In the leaf the burst of power smashes a molecule of carbon dioxide and helps free the carbon to make food for the plant [3]. The plant may be eaten (giving food ‘Calories’), or may fall to the ground and settle and age for millions of years turning perhaps to coal. That coal may be dug up and burned to give heat [4] in a power station, boiling water to supply compressed steam [5] that may drive a turbine [6] which may be used to generate electricity [7] which we may then use in our homes to heat/light/move/cook or perhaps to recharge our mobile phone [3]. That energy will then be used to transmit microwaves when you make a call [2] which will mostly dissipate into the environment heating it (very) slightly [4]. Eventually the warmed earth radiates [2] this excess of heat off into the void where perhaps it will have another life…

This short story is testament to an enormous quantity of learning by our species, but there are some clear exclusions to be read into the story:

  • Energy fields (auras) or the energy lines in the body that conduct the “chi” (or life force) of Asian medical tradition
  • Energy lines on the Earth (aka Ley lines)
  • Negative or positive energy (as in positive or negative “vibes”)

These energy currencies relate to theories and beliefs that science has been unable to verify and thus they have no known “exchange rate”. Asking how many light bulbs can you power with your Chi is thus a nonsensical question, whereas it would not be for any scientifically supported form of energy. And since energy flows account for all actions in the universe, not being exchangeable would be rather limiting.

Where exactly is Energy kept?

This may sound like s strange question, we know Energy is kept in batteries, petrol tanks and chocolate chip cookies. But the question is, where exactly is it stored in those things?

Energy is stored in several ways:

  • as movement – any mass moving has energy by virtue of the movement, which is called Kinetic Energy
  • as matter – Einstein figured out that matter is just a form of energy, and the exchange rate is amazing – 1g = 90,000,000,000,000,000 joules (from E=mc^2)
  • as tension in force fields

That last one sounds a bit cryptic, but actually most of the energy we use is in this form –  petrol, food, batteries and even a raised hammer all store energy in what are essentially compressed (or stretched springs).

What is a force field? Why on earth did I have to bring that up?

All of space (even the interstellar vacuum) is permeated by force fields. The one we all know best is gravity – we know that if we lift a weight, we have to exert effort and that effort is then stored in that weight and can be recovered later by dropping it on your foot.

Gravity is only one of several force fields known to science. Magnetic fields are very similar – it takes energy to pull a magnet off the fridge , and so it is actually an energy store when kept away from the fridge.

The next force field is that created by electric charge (the electric field). For many years this was though to be a field all on its own, but a chap called Maxwell realised that electric fields and magnetic fields are in some senses two sides of the same coin, so physicists now talk of ‘electromagnetic’ fields. It turns out that electric energy (such as that stored in a capacitor) consists of tensions in this field, much like a raised weight is a tension in a gravity field. Perhaps surprisingly, light (as well as radio waves, microwaves and x-rays) are also energy stored in fluctuations of an energy field.

Much chemical energy is also stored in electric fields – for example, most atoms consist of positively charged nuclei and negatively charged electrons, and the further apart they are kept, the more energy they hold, just liked raised weights. As an electron is allowed to get closer to the nucleus, energy is released (generally as radiation, such as light – thus hot things glow).

The least well known force field is the strong ‘nuclear’ force. This is the forces that holds the subatomic particles (protons) together in the nucleus of atoms. Since the protons are all positively charged, they should want to repel each other, but something is keeping them at bay, and so physicists have inferred this force field must exist. It turns out their theory holds water, because if you can drag these protons a little bit apart, they will suddenly fly off with gusto. The strong nuclear force turns out to be bloody strong, but only works over a tiny distance. It rarely affects us as we rarely store energy with this energy field.

Now we understand force fields we can look at how molecules (petrol, oxygen, chocolate) store energy. All molecules are made of atoms connected to one other via various ‘bonds’ and these bonds are like springs. Different types of molecules have different amount of tension in these bonds – it turns out coal molecules, created millions of years ago with energy from the sun, are crammed full of tense bonds that are dying to re-arrnage to more relaxed configurations, which is exactly what happens when we apply oxygen and the little heat to start the reaction.

The complexity of the tensions in molecules are perhaps the most amazing in nature, as it is their re-arrangements that fuel life as we know it.

What exactly is Heat then?

You may have noticed that I did not include heat as a form of energy store above. But surely hot things are an energy store?

Yes, they are, but heat is actually just a sort of illusion. We use heat as a catch all term to describe the kinetic energy of the molecules and atoms. If you have a bottle of air, the temperature of the air is a direct consequence of the average speed of the molecules of gas jetting around bashing into one another.

As you heat the air, you are actually just increasing the speed of particles. If you compress the air, you may not increase their speed, but you will have more particles in the same volume, which also ‘feels’ hotter.

Solids are a little different – the atoms and molecules in solids do not have the freedom to fly around, so instead, they vibrate. It is like each molecule is constrained by elastic bands pulling in all directions. If the molecule is still, it is cold, but if it is bouncing around like a pinball, then it has kinetic energy, and feels hotter.

You can see from this viewpoint, that to talk of the temperature of an atom, or of a vacuum, is meaningless, because temperature is a macroscopic property of matter. On the other hand, you could technically argue that a flying bullet is red hot because it has so much kinetic energy…

Is Energy Reusable?

We as a species, have learned how to tap into flows of energy to get them to do our bidding. So big question: Will we use it all up?

Scientists have found that energy is pretty much indestructable – it is never “used-up”, it merely flows from one form into another. The problem is thus not that we will run out, but that we might foolishly convert it all into some unusable form.

Electricity is an example of really useful energy – we have machines that convert electricity into almost anything, whereas heat is only useful if you are cold, and light is only useful if you are in the dark.

Engineers also talk about the quality (or grade) of energy. An engineer would always prefer 1 litre of water 70 degrees warmer than room temperature, than 70 litres of water 1 degree warmer, even though these contain roughly the same embodied energy. You can use the hot water to boil an egg, or make tea, or you could mix it with 69 litres of room temperature water to heat it all by 1 degree. It is more flexible.

Unfortunately, most of the machines we use, turn good energy (electricity, petrol, light) into bad energy (usually “low grade heat”).

Why is low grade heat so bad? It turns out we have no decent machine to convert low grade heat into other forms of energy. In fact we cannot technically convert any forms of heat into energy unless we have something cold to hand which we are also willing to warm up; our machines can thus only extract energy by using hot an cold things together. A steam engine relies just as much on the environment that cools and condenses water vapour as it does on the coal its belly. Power stations rely on their cooling towers as much as their furnaces. It turns out that all our heat machines are stuck in this trap.

So, in summary, heat itself is not useful – it is temperature differences that we know how to harness, and the bigger the better.

This picture of energy lets us think differently about how we interact with energy. We have learned a few key facts:

  1. Energy is not destroyed, and cannot be totally used up – this should give us hope
  2. Energy is harnessed to do our dirty work, but tends to end up stuck in some ‘hard to use’ form

So all we need to do to save ourselves is:

  1. Re-use the same energy over and over
  2. by finding some way to extract energy from low grade heat

Alas, this is a harder nut to crack than fission power, so I am not holding my breath. It turns out that there is another annoying universal law that says that every time energy flows, it will somehow become less useful, like water running downhill. This is because energy can only flow one way: from something hot to something cold – thus once something hot and something cold meet and the temperature evens out, you have forever lost the useful energy you had.

It is as if we had a mountain range and were using avalanches to drive our engines. Not only will our mountains get shorter over time but our valleys will fill up too, and soon we will live on a flat plane and our engines will be silent.

The Big Picture

So the useful energy in the universe is being used up. Should we worry?

Yes and no.

Yes, you should worry because locally we are running out of easy sources of energy and will now have to start using sustainable ones. If we do not ramp up fast enough we will have catastrophic shortages.

No, should should no worry that we will run out, because there are sustainable sources – the sun pumps out so much more than we use, it is virtually limitless.

Oh, and yes again – because burning everything is messing up the chemistry of the atmosphere, which is also likely to cause catastrophe. Good news is that the solution to this is the same – most renewable energy sources do not have this unhappy side effect.

Oh, and in the really long term, yes we should worry again. All the energy in the universe will eventually convert to heat, and the heat will probably spread evenly throughout the universe, and even though all the energy will still be present and accounted for, it would be impossible to use and the universe would basically stop. Pretty dismal, but this is what many physicists believe: we all exist in the eddy currents of heat flows as the universe gradually heads for a luke-warm, and dead, equilibrium.

=============

Ok, so it was longer than a page, so sue me. If you liked this article, my first in a series on energy conservation, you might like my series on efficient motoring.

Please leave a comment, I seem to have very clued-up readers and always love know what you think!

=============

§ Footnotes:

[1] Matter is energy according the Einstein and the quantity relates to mass according to E=mc^2 (c is a constant equal to the speed of light).

[2] Radiation (like sunlight) is a flow of energy, and energy content relates the frequency according to E=hf (h is the Planck constant).

[3] Chemical energy – the most complex energy, a mixture of different tensions in nuclear and electromagnetic force fields.

[4] Thermal (heat) energy- this is really just a sneaky form of kinetic energy [6 below] – small particles moving and vibrating fast are sensed by us as heat.

[5] Compression (or tension) energy – while compressed air is again a sneaky form of kinetic energy [6], a compressed spring is different – it’s energy is more like chemical energy and is stored by creating tension in the force fields present in nature (gravity, electromagnetism and nuclear forces).

[6] Kinetic (movement) energy

[7] Electrical energy – this energy, like a compressed spring, is stored as stress in force fields, in this case electromagnetic force-fields.

Does your company need a corporate scientist?

Question: what is the point of having a scientific advisor?

We know the scientist type – they are pedantic, idealistic, inflexible – and socially challenged.

They are generally unable to do business in ‘the real world’. So why would you want one on the team?

We all know that business has some hard rules – the machines need to work and the numbers need to add up – but it is also an art – it is about people, about relationships, deals, loyalties, reputations. It takes care and passion. It is often irrational and is generally completely unpredictable.

So if it cannot be modelled and reduced to equations, why would you want an irritating pedant on the team?

Because in a complex world, the truth is worth its weight in gold.

A scientist’s job, is to use his or her training to filter out emotions, wishful thinking, bias and noise and identify what is true.

Just as every salesperson has their patter, every ceo will have their ‘summary’ for the board – and what they say will be wilfully spun. However, so long as they themselves know the basic truth, they will still be able to act wisely. They will also be able to maintain credibility pinning their spin on little nuggets of purest ‘truth’.

A world without a constant return to rational analysis will eventually wind up so twisted (the proverbial tangled web) that we will get entire businesses built on air.

Ok, so maybe we need someone to provide the boss with the unvarnished truth. What they then do with it then, well that’s business!

==================

Aside for accountants: To be fair, accountants are also supposed to do this, but I would argue that only a true scientist will (probably through a mental fault) put truth first. Note that I am not saying scientists are more honest than other people – they lie and cheat too, it’s a desire to find the truth that I’m talking out, which is no guarantee of a desire to speak it.

Communicating across cultures – how to be understood!

If beauty is in the eye of the beholder, then the message is in the ear of the listener.

Thus, when we communicate, a key challenge is to make the intended message match the received message as closely as possible. Thus effective communicators are very good at getting into the mind of the audience and seeing or hearing the message from their perspective.

Of course, not everyone can do this. One way this is resolved is by taking advantage of two way communication – if the listener can paraphrase what you are telling them, as a sort of parity check on the message, then any misunderstandings can be revealed and dealt with. But this requires a good listener.

It is also important that if the message has a ‘thread’ (like a storyline) that the listener does not lose that thread due to some short lived issue – missed words due to accent, background noise or indeed the use of unfamiliar words and jargon.

Thus, when telling a story there needs to be redundancy in the message (just like in electronic communication protocols) such that if the thread is dropped it may be picked up again.

—————–

I recently moved to the USA from the UK and am currently learning how to communicate across a cultural divide.

Anyone would think that Americans would speak English and perhaps they do, but ‘English’ is such a broad church that it allows for different groups to live their entire lives using only slightly overlapping subsets of the language. Observing these vocabulary differences I have noticed a sort of one-way breakdown that occurs in this case…

Diodes only allow electons to flow one way...

Just like a diode can allow electric current to flow one way and not another, it seems that poor vocabulary matching can have a similar effect on a message. It turns out that when Americans talk at me, I can easily recognize the words I don’t know, but when I talk I cannot recognize (or predict) the words they won’t know.

This may seem like a statement of the blindingly obvious, but it is the same effect as the card trick when the magician shows you a bunch of cards, say ten, and asks you to pick one and remember it. He will then shuffle the cards and show them to you again and tell you that your card has been removed. Lo and behold, your card is gone. Amazing, how did they know which one to remove, what are the chances!?

Well the trick is simple, the magician changed ALL the cards with sleight of hand, and relied on the fact that you didn’t bother to memorize the ‘other’ cards.

It is similar to the issue with speaking to foreigners – it is very hard to know which of your words are missing from their vocab. You can spend weeks or months living with them and you will pick up their vocab but you will find it hard to notice the words they don’t use. Thus after a while, a foreigner will understand pretty much all he or she hears, but when they talk, will still be poorly understood as they will persist in using unknown words.

Thus the flow of information is retarded in one direction only. I think this is a neat observation. That is to say, it is cool and clever, not clean and tidy 🙂

Unproven medicine : an alternative name for alternative medicine

“Alternative and complimentary therapies”. They sound so nice. So warm and fuzzy. Surely they augment the cold clinical scientific approach to regular medicine, and have a more holistic approach catering to the soul and spirit as well as the flesh?

I argue not. Hear out my logic…

Any treatment that has proven to provide reliable benefit, is automatically added to the canon of ‘western’ medicine. Therefore the only treatments left available for ‘alternative’ to claim, are those that are unproven, or worse, treatments known to be actively harmful.

Promoters of alternative medicine will argue that western medicine is still woefully weak, and not tuned into holistic and spiritual matters and that such things defy proof. This is clearly claptrap. If you do a well designed double-blind, placebo-controlled test of an ‘alternative therapy’ and the outcomes are no better than for the placebo, then the participants who got the treatment are no better off, spirit or no spirit.

I personally prefer the sort of benefits that can be detected!

How did this situation come to pass, where unproven medications have such a grip?

I think there are three main ingredients:

  1. People make money from other people’s fear (in both western and alternative medicine) and that causes folks on both sides to hide or twist the facts – and also erodes the public’s trust.
  2. The fact that complimentary medicines do actually offer benefits – the well-known benefit of care and attention and also the benefit of the placebo effect – muddies the waters.
  3. It is however the human weakness of putting far too much value on anecdotal evidence that assures the future of unproven medicine.

I think that people who understand this do a disservice to our communities by giving this bad medicine the label ‘alternative’ or ‘complimentary’, so I would like to propose the term ‘unproven medicine’. I would however welcome some more lyrical suggestions!

Evil: a baseless construct

This morning on BBC Radio 4’s “Though for the day”, the Right Reverend James Jones claimed “Evil triumphs when the imagination is inebriated with evil”.

So as a logician I would like to know what exactly “evil” is. Can it be measured (like energy)? Or detected by our (5) senses? Does it conform to the known laws (models) of physics?

For something so darn vague it is amazing how much we use it day to day. We blame so much on it, and justify so much in its name.

But in a strange dichotomy, if you pay close attention the the professions (medicine, law, engineering, etc) you will find scant mention of this concept – it does not help in the treatment of criminals or the mentally ill it does not explain earthquakes or building collapses – it seems has no use in the real world, but is used by politicians and preachers like a moral blank-cheque.

I therefore suggest that the concept of evil is a relic from a mystical past in which gods were invoked to explain thunder and demons to explain crop failure.

Surely all talk of someone being ‘evil’ or an act being ‘evil’ has no place in our secular world?

God vs. logic

It occurs to me, as it may well have occurred to you at some point, that the very idea of anything “supernatural” existing is self-defeating because anything that blatantly defies our methods of analysis and understanding would totally undermine the entire show. Thus our system of understanding which is so incredibly consistent that it’s able to convince electrons to run such complex mazes that the whole internet results, would be fatally flawed if even the smallest miracle were possible.

The application of logic has yet to be shown to fail.  The world has never thrown up any scientifically verifiable evidence of anything outside of our model. Thus there has never been any evidence for any god, any miracle, any ghost, any anything supernatural.

Yet its not as if God (as rep for all things supernatural) is deliberately covering his tracks. If He was, no one would know about Him. Clearly his followers have detected some “evidence” – but amazingly no science or logical analysis has ever trapped any of it.

So if you believe in God, how can you have any faith in such a poor system, that can’t detect this God you see so evidently? The system so good it cures diseases, determines the compositions of distant stars and genetically engineers mice so they glow in the dark can’t see something so big and important three quarters of the planet believe in it.

There is indeed an elephant in the room.

Post-theism

I inhabit a post-theistic world. God or the idea of God has long-since lost its influence on my thinking – my morals, my emotions or my research. I am thus not so much an atheist as a “post-theist”. To me the debate is over, so the categorisation into the do’s and do-nots is now only an interesting study of human gullibility rather than a deep & heart-rending dilemma. 

Anyway, I thought it would be good to put into words my position on the whole God-vs-Science debate, which is really rather important and most certainly cannot be ignored.

I have frequently been tempted to write about this topic, but have opted to keep my powder dry, because I was not sure which approach would actually increase the net happiness in the world (groan away, but what other approach is better?). Options included:

  • Explaining how I came to be an atheist: my idiot christian school taught me about other religions, and I quickly added two-and-two and realised if they were mutually incompatible they were probably all false
  • I could go on about the scientific implausibility of the whole show. The total lack of evidence, not to mention the blatant disregard for logic.
  • I could explain how there is evidence human brains are designed, by evolution, to believe in concepts like God. 
  • I could go into the details of infectious memes, and how religion is a darn good example of a viral idea that has all the properties you would try to put into a computer virus if you made one (which I did once, for a HP48s, a once popular calculator).
  • Lastly, I could come out like a raging fundamentalist pointing out how religion is the ‘root of all evil’ (to borrow a phrase) – how religion justified the great wars and the subsequent suppression of nations /women / freethinkers / witches / etc.

However, I realise that Hecht, Dawkins, Harris and several others have walked this path (rather well) for me. Perhaps I should focus my efforts on subjects not yet so well covered? Some would argue that atheists need to rally together and ride the current wave of interest and publicity – we need to gain the critical mass.

This is the real question. What would help?  

I don’t know! Please help…