Tag Archives: technology

What exactly is ‘science’?

I used to think science was the practice of the scientific method; i.e. you propose a hypothesis, you develop a test of the hypothesis, execute it and prove the hypothesis.

That worked for me until the end of high school.

At university, I was a true nerd. I read all my textbooks cover to cover (mainly because as I was too shy for girls and too poor for booze). During this time, the definition above started to fail. So much of the science was maths, statistics, observation, pattern recognition, logic and quite a bit of rote learning. Not all of it fitted into my definition of science. I became a fan of a new definition: science is the study of the nature of reality .

But then I did post-grad, and I realised that not much in science is ‘proven’ (I guess this is the point of post grad study). Evolution, for example, is not proven. That the sun revolves around the earth is not ‘proven’. I discovered that the only things that could be proven were ‘ideas’ about ‘other ideas’. Bear with me on this one.

Let us say we define the number system – this is an ‘idea’ or conceptual construction. Within this construction we can ‘prove’ that one and one is two. Because we ‘made’ the system, with rules, then we can make factual and true statements about it. We can’t do this about the real world – we cannot say anything with absolute certainly because we rely on flaky inputs like our own highly fallible perception.

It’s like that old chestnut: how can you be sure you are not living in a giant simulation? Of course you can argue that it is pretty unlikely and I would agree, and right there we have a clue to a better definition of science.

It turns out that much of modern science deals in ‘likelihood’ and ‘probability’ rather than proof and certainty. For example, we can say that the theory of evolution is very likely to be more-or-less right, as there is a lot of corroborating evidence. Science cannot be run like a law court – where the prosecution only need to reach a threshold of reasonable doubt to ‘prove’ someone guilty.

Aside for nerds: Science says you can use logic to prove things absolutely, but logic only works with ideas, and there is a breakdown between ideas and reality, so one can never prove things in reality. So it is thoroughly wrong for a court to say that someone has been proven guilty. The courts use this language as a convenience, to “draw a line under” a case as they have not found a moral way to dole out punishments based on probabilities. Imagine a world in which a murder suspect gets a 5 year sentence because the was a 20% chance he was guilty! Sports referees often operate in this decisive way, perhaps because it saves a lot of arguing!

Anyway, good science cannot just give up and say once there is consensus something passes from theory to fact. This is sloppy. We have to keep our options open – forever.

Think for example of Newton’s Laws of Motion. They are called ‘Laws’ because the scientific community had so much faith in them they passed from theory (or a proposed model) to accepted fact. But they were then found wrong. Strange that we persist in calling them laws!

It took Einstein’s courage (and open mindedness) to try out theories that dispensed with a key plank of the laws – that time was utterly inflexible and completely constant and reliable.

So it is that the canon of scientific knowledge has become a complex web of evidence and theories that attempt to ‘best fit’ the evidence.

Alas, there are still many propositions that many so-called scientists would claim are fact or at least ‘above reproach’. Evolution is attacked (rather pathetically), but the defenders would do well to take care before they call it ‘fact’. It is not fact, it is a superbly good explanation for the evidence, which has yet to fail a test of its predictions. So it is very very likely to be right, but it cannot be said to be fact.

This is not just a point of pedantry (though I am a bit of a pedant) – it is critical to keep this in mind as it is the key to improving our model.

Two great examples of models people forget are still in flux…

1) The big bang theory

2) Quantum theory

I will not go into global warming here though it is tempting. That is one where it doesn’t even matter if it is fact, because game theory tells you that either way, we better stop making CO2 urgently.

Back to the big bang.

I heard on the Skeptic’s Guide podcast today about an NSF questionnaire that quizzed people about whether they believed the universe was started with a massive explosion, and they tried to paint the picture that if you didn’t believe that, then you were ignorant of science. This annoyed me, because the big bang theory is now too often spoken of as if it were fact. Yes, the theory contributes viable explanations for red-shifted pulsars, background radiation, etc, etc, but people are quick to forget that it is an extrapolation relying on a fairly tall pile of suppositions.

I am not saying it is wrong, all I am saying is that it would be crazy to stop exploring other possibilities at this point.

You get a feeling for the sort of doubts you should have from the following thought experiment:

Imagine you are a photon born in the big bang. You have no mass, so you cannot help but travel at ‘light speed’. But being an obedient photon, you obey the contractions in the Lorentz equations to the letter, and time thus cannot pass for you. However, you are minding your own business one day when suddenly you zoom down toward planet earth and head straight into a big radiotelescope. Scientists analyse you and declare that you are background radiation dating from the big bang and that you have been travelling for over 13 billion years (they know this because they can backtrack the expansion of the universe). Only trouble is, that for you, no time has passed, so for you, the universe is still new. Who is right? What about a particle that was travelling at 0.999 x the speed of light since the big bang? For it, the universe is some other intermediate age. So how old is the universe, really?

This reminds us of the fundamental proposition of relatively – time is like a gooey compressible stretchable mess, and so is space, so the distance across the universe may be 13.5 billion light years, or it might be a micron (how it felt to the photon). It all depends on your perspective. It is much like the statement that the sun does not revolve around the earth and that it is the other way around. No! The sun does revolve a round the earth. You can see it clearly does. From our perspective at least.

Now, quantum theory.

Where do I start? String theory? Entanglement? Please.

The study of forces, particles, EM radiation and the like is the most exciting part of science. But being so complex, so mysterious, so weird and counter intuitive, it is super vulnerable to abuse.

Most people have no idea how to judge the merits of quantum theories. Physicists are so deep in there, they have little time (or desire or capability) to explain themselves. They also love the mystique.

I do not want to ingratiate myself with physicists, so I will add that the vast majority have complete integrity. They do want to understand and then share. However, I have been working in the field for long enough to know that there are weaknesses, holes and downright contradictions in the modern theory that are often underplayed. In fact these weaknesses are what make the field so attractive to people like me, but is also a dirty little secret.

The fact is that the three forces (weak nuclear, strong nuclear and magnetic) have not been explained anything like as well as gravity has (by relativity). And don’t get me started on quantum gravity.


Anyway, thinking about all these issues, I concluded that science was (definition #3) the grand (platonic) model we are building of reality, ever evolving to best fit our observations.

My man, Plato

That works well for me. However, I recently came across a totally different definition for science:

# 4) “Science is a tool to help make the subjective objective.”

OK I paraphrased it to make it more snappy. It was really a discussion about how science was developed to overcome the fallibility of the human mind. Examples of weaknesses it needs to overcome are:

  1. The way our perception is filtered by preconceptions
  2. How we see pattern where there is none
  3. How we select evidence to match our opinion (confirmation bias)
  4. How we  read too much into anecdotal evidence
  5. etc etc.

I could go on. So ‘science’ is the collection of tricks we use to overcome our weaknesses.

I like this definition. We are all going about, and in our heads we are building our model of the world… and its time for an audit!

Evolution in the toilet bowl

No, this blog is not about how evolution theory is going down the toilet, crushed in the cold grip of reason by The Discovery Institute.

This blog is about how toilet bowls can be used to show speciation forces at work [speciation – the birth of new species].

You see, I have just recently moved to the US, and have noticed the toilets here exhibit characteristics different to their UK and European cousins. Most specifically, US toilets are filled far higher with water and the water surface is greatly increased in diameter. Furthermore, the flush-handles in the US are more often on the left, rather than on the right as they are in the UK.

How can it be in such a small and networked world, such a speciation could occur and indeed survive?


A short stroll on the ‘net does not reveal much about how Americans came to prefer deep water, so I will have a guess. Presumably some big brand (like American Standard) was strongly dominant and the flagship model offered deeper water –  perhaps to prevent skid-marks, or maybe to ensure ‘complete submersion’. As this brand was so strong it was copied, and became the standard. Time passed, and now the average american might turn their nose up at the European low-level option (or indeed the interesting Asian options).

Question: When a European sees an American toilet, are they amazed at its superiority?

No. People don’t like change – and the deep American version is probably not actually any better. For example, the chance of urine splashing on the seat (or on one’s rear for those sitting) is increased, and so therefore, if anything, I would say the ‘deep dish’ is inferior.

So what does this say about evolution? It shows how a contraption, in different environments, will evolve to become different. But more interesting (to me at least) is that Americans and Europeans are not really significantly different and thus the pressures at play were really rather random. It is not as it American toilets have evolved to be stronger because Americans are larger (that would be no surprise) –  this ‘depth’ evolution is different – and very real, but the result of an almost random mutation (of the water depth) that is perhaps not any fitter, just different, and it has survived, despite its weaknesses, due to its isolation across the pond.

What I am saying is that in replicating systems, things will drift apart (there is a natural divergence) on a fast time scale, and the survival of a trait is on a longer time scale. Perhaps in 200 years time we will see no more deep toilets, but right now we have a new species.

Thus I propose you may actually get speciation from drift alone without fitness actually being tested.


So will a device that gently catches one’s emissions and silently whisks them away, instantly, with no splashing, odour, mess or need to flush will supplant the lot? No, because it will probably be expensive, and this cost pressure will always ensure room in the ‘ecosystem’ for multiple solutions – the “two planks over a ditch’ option will always be around because it is so cheap and simple.


Anyway,  next time you go, think about what the toilet might teach us about the subtler aspects of evolution by selection. It’s valuable thinking time after all!  🙂


Epilogue: an aside on valves…

There are obviously several competing technologies for the flush valve, and none has proven clearly superior; so the fact that the US does not (in my short experience) have a very high penetration of the siphon valve (‘claimed’ by Thomas Crapper), does not surprise me. It is indeed much more leak-proof than the popular ‘flapper’ valve, but more complex and thus prone to breakdown. However, the newly popular half-flush siphon valve, which can be easily retrofitted looks to be a clear leap in its evolution. Competition is hot though, and heading to the US, we will wait with bated breath to see which technology wins out 😉

Some references:

http://www.toiletology.com/ – some history

http://en.wikipedia.org/wiki/Thomas_Crapper – the famous inventor of certain improvements

Environmental pressures are a new force in the future evolution of the toilet. First we had the dual flush, now we have the “No Mix” toilet that keeps 1’s and 2’s apart for tailored treatment! http://www.sciencedaily.com/releases/2010/03/100310134258.htm

The Apple Mac: It’s a religion…

It has been explained by writers better than I how our minds are wired in a way that makes them vulnerable to religion.

Whether it is our desire to feel secure or have simple and complete explanations for natural phenomena or simply because we enjoy the social scene at church, there is no doubting the power of the effect. Even in modern times, entire lives, indeed entire civilizations are devoted to the superstitious concept of supernatural Gods.

Although L. Ron Hubbard may have started a religion while knowing it was all a sham, most religions did not need such deliberate action. Our innate need to have faith in things has allowed religious concepts to emerge and evolve freely in our communities as far back as records go.

So why do I bring that up?

It occurred to me today while pondering why people are so defensive about Apple Mac computers – I realised that their behaviour had much in common with religious ‘zeal’.

Then it occurred to me how much the success of Apple relies on perception and conception. If it was just about getting the fastest computer, you would not buy a Mac. If it was about buying something that has wide compatibility, you would not buy a Mac. If it was about cost, you certainly would not buy a Mac.

Some might argue that Macs are more intuitive and ‘easy to use’. These are people whose idea of computing is buying a shiny box, plugging it in and doing exactly what they are expected to do. They are people who just accept it when they are told they need to buy a new printer. Or worse, they blame the printer – what a crappy printer, not compatible! These are people who do not need to set up a complex network, or run a database server.

Anyone who has a Powerbook G4 that cost several grand and is not actually compatible with the latest OSX release, yet needs that OSX release in order to actually work, and still hugs and caresses the machine as it it were a newborn baby while defending its honour and wanting to spend another several grand on a newer shinier one, is, in my opinion, dabbling in a cult.

OK, before you write me off as some sort of anti-mac fanatic, I will admit they are beautiful.

Moving swiftly on, I think it is worth analysing Apple’s success.

How does a company that controls the details of their products so completely compete with a product (the PC) that is made by hundreds of companies all constantly competing, innovating, coming and going, rising and falling? The modular design of the PC allows almost anyone to buy all the bits and assemble the machine themselves; with so many companies making monitors and keyboards and hard drives, some will make bad (fatal) decisions and die, some will make good decisions and thrive and if there are enough upstarts to keep up the supply, the consumer will only ever see the winners, even if their victory was a flook, it was a victory none the less.

You could say that PC is the computer you get from natural selection (survival of the fittest), the Mac is the the computer you get when you try to control the evolution (unnatural selection).

Now a company that tries to make everything itself can capture the value chain, sure, but as it is only one company, it cannot make even one fatal decision, and thus needs to be a little more cautious. This means it is doomed to always lag slightly on the performance vs value curve – so what does it do?

Easy, get the consumer to accept poor value. Make up for performance by buying in high quality technologies (lcd screens, hard disks, etc), and make the customer pay the premium. Then focus on marketing.

Marketing is the art of making people want something. It is unnecessary for products people need.

So what happened at Apple?

Apple, perhaps by good luck, became perceived as a David vs the Goliaths of IBM and Microsoft. For some reason (was it deliberate?) Apple computers gained traction in music recording and graphic design, and gained a sort of bohemian chic that is rather impressive considering that it is essentially “Big Business” and, like most companies, designed to make money.

Clever partnerships, and particularly the inspired partnership with Adobe (think Acrobat PDF’s, think PhotoShop) strengthened their position with journalists, publishers and illustrators establishing the Mac as the creative profession’s computer of choice.

This turned out to be a good thing, as the naughties have been the most art friendly decade yet, as popular culture has come to resent things like ‘work’ and ‘industry’, and a certain sections of society have come to view activities like sport as trivial and meaningless when compared to the value and depth in culture, poetry, good food, yoga, spiritualism and so on.

In other words, the artists have moved up in the world.

Some of the more switched on folk will realise that brands like Gucci/Armani/Christian Dior or Ferrari/Porche/Aston Martin  or Rolex/Michel Herbelin/Patek Philippe are based entirely on massaging the egos of their customers, and in the last case, they probably don’t even keep better time than a black plastic Casio.

But not many of the arty crowd have realised that Apple is using their independent nature against them. The Mac user seems to be infected with the idea that in using a Mac they are somehow being beneficent to the world, will somehow be more creative, they they are part of some loving brotherhood that has exclusive access to the truth and the light.

This is because, by accident or design, the Apple brand has been developed to find that part of our mind that wants to believe and wants to belong, and is easily dazzled; the brand is acting like a religion.


Apple’s alliance with artists continues with U2 and the Black Eyes Peas, both highly credible symbols of free-thinking modernism. But I want you to ask yourself: what is free thinking about this computer company? I’m not sure, but I suspect the only free-thinking thing about Apple is its association with icons of the free-thinking world. It is just an electronics company for Pete’s sake. Like Sony, like Samsung, like Nokia.

If you believe there is any more to it than that, then you are welcome to pay for it.


PS: Besides the defunct G4 in the drawer, there is also an iPod classic in my home. I like it. I like to hold it. Mmm.

How to drive more efficiently

In this article I hope to describe some efficient driving ‘tactics’ and hopefully also explain why they work.

To do this I start with a question… what, exactly, is energy?

Many people think scientists know this, but alas, they don’t. It is one of science’s great mysteries.

On the other hand, they do know an awful lot about how it flows (they call it thermodynamics which is science-jargon for “heat-flows”). And when energy flows, we also know how to harness it.

If we consider the car, we can think of a fuel tank as bottled energy. The engine then turns that bottled energy into motion. But the laws of physics say energy is never destroyed – in only flows. So where does it go after that?

Understanding the answer to this simple question will help us all to drive more efficiently.

Here are some of the outlets for the energy from your petrol tank:

1. Accelerating your car – energy is transferred into the mass of the car. They call this ‘kinetic’ energy – kinetic is just latin for ‘movement’.

Aside for nerds: It’s the kinetic energy in a car that makes it so dangerous – when a car crashes into a tree this energy flows at a speed comparable to a bomb-blast, bending the metal and hurting the people.

2. Going uphill – the energy is also put into the mass of the car. They call this ‘potential’ energy – we’ll see why in a minute.

3. Friction – the friction inside the engine, of the wind on the car – and last but not least the rubbing of your brake shoes on your brake disks – all turn your energy into heat

Too much energy ends up in the brakes...

Too much energy ends up in the brakes...

4. Noise – some goes into people’s ears, but eventually it all just heats the environment.

And that’s it.

So the first thing to notice is that friction and noise are bad. It is not our aim to heat the world up.

So how do we avoid heat and noise? Firstly, keep your car in good nick. Keep your tyres properly inflated too.

Secondly, drive slowly. Air friction is much more significant the faster you go. Doubling your speed quadruples the frictional loss per km and multiplies the energy loss per second (power) by 8! Thus there is about 21% more energy loss to friction at 77mph than at 70mph, despite being only 10% faster. (and it requires 33% more engine power!)

My third tip is a little controversial. Try not to brake.

If you are approaching a stop, try to coast to a halt by taking your foot off the gas far in advance. If you do this, you will avoid heating your brakes and rather spend your energy on air friction, which was inevitable anyway. We will come back to braking in a minute.

Now can we do anything about the energy required to accelerate and go uphill?

Yes, we still ‘have’ this energy- so it can be recovered!

The mass in your car (including you yourself) become a store of energy when you are a) going fast, and are b) at the top of a hill.

Using potential energy...

Using potential energy...

The hill energy is called ‘potential’ energy because its got the ‘potential’ to be recovered. We generally recover it without even thinking – when we go back down the other side – gravity does much of the work.

However, we only get it all back if we don’t brake (or use engine compression) to slow ourselves. If failing to brake would lead you to exceed the speed limit, then that’s a pity, as I can’t condone breaking the speed limit, especially if my children are about.

What about the kinetic (going fast) energy? We usually also recover this – but only if we allow ourselves to coast to a stop. Again, if we use the brakes, we turn all that precious energy directly into heat, which is literally burning it.

We also tend to brake when we approach corners, again, it is more frugal to take your foot off the pedal far in advance of the corner such that you are already going slow enough to take it safely when you (eventually!) reach it.

All that might sound complicated, but it all translates to a simple rule of thumb: don’t use your brakes unless you have to. Of course this logic can be taken to its extreme (and occasionally unsafe) conclusion – take a look at the practices of the hypermiler community.

Anyway, that’s all you need to know to get a good 10-20% more miles from each tank.

That concludes this series of articles on greener motoring, I hope it has been of use. Please don’t hesitate to add your own tips in the comments section. Thanks!


Series home…

Could the internal combustion engine be greener?

For most people, fully electric cars are some way off. Most people still prefer to have a range of 300+ miles, and to fill up in a few minutes at one of several thousand filling stations.

So how bad is the car we know and love? Can it be made any better? In this article I look the most popular technologies and developments in this area.

The Internal Combustion Engine…

Until all-electric / fuel-cell / nuclear cars are fully realised – we will be stuck with the internal combustion engine. It is therefore well worth looking at how we can make the most of them.

The basics are simple – you heat up some gas, it expands and pushes a piston. In theory you should be able to get all of that heat and turn it into force.

The Internal Combustion Engine

The Internal Combustion Engine

Alas, there are details. We can’t extract all the energy because of the laws of thermodynamics – in fact the limit is about 37% given the temperature range in a typical petrol engine. Then you also have to spend some energy on sucking the gases in. You have to spend energy pumping the gases out. There is friction. There is the heat. The list goes on. Eventually we extract a pathetic 20-25%.

It is therefore not surprising that the piston-driven engine is still being improved despite nigh-on 300 years passing since the earliest versions.  There are still redesigns of the inlet manifold, of the valves, of the crankshaft – all designed to lessen the waste.

To pick one example, we can look at the Atkinson Cycle. One of the many great minds to apply itself to engine efficiency was James Atkinson. He realised that if the power and exhaust strokes were designed to be longer than the intake and compression strokes (see a good animation here), you could let the hot gases expand to a greater volume then they previously occupied – and thus be cooler – so your exhaust gases carry away less embodied energy.

It really works – but is not used. Why? Well mainly because we are too committed to the current design and too much money has been spent in its evolution (which was driven by the need for power, not efficiency); to go back the drawing board has simply been too much hassle. Of course, times they are a-changing…

Another technology waiting for its time in the sun is the “VCR” engine, which stands for Variable Compression Ratio. This is a system in which the volume of the combustion chamber may be adjusted depending on whether you are accelerating, coasting or pulling a caravan up the Col du Tourmalet. It promises to constantly optimise the energy extraction. If its developers can convince major car manufacturers to trust the rather complex crank arrangement it may well be a viable alternative in as soon as 5 years from now. Watch this space.

The Transmission

Enough about the engine – what about the clutch and gearbox? That’s the “tranny” to my American friends, which means something totally different here in the UK.

The transmission’s job is to allow the car to vary speed from 0 to over 100 mph whilst the engine only varies only from around 800 – 6000 rpm, which is a much smaller range. With only 4 or 5 gears you need to use a fair range of engine revs to drive, however, the engine is not equally efficient at all speeds.

Pricnple of the CVT, with thanks to HowStuffWorks.com

Principle of the pulley-based CVT, with thanks to the brilliant HowStuffWorks.com

The idea has therefore been brewing for a device that can allow complete freedom for the engine to run at its most efficient speed, regardless of the car’s speed.

Its called the ‘continuously variable transmission’ or CVT. The most practical design is the pulley-type (see image), though others are also being developed.

In addition to allowing the engine to run at its most efficient speed,  there is also  no disruption of power flow due to gear changes. All of this will add a few vital % to your overall efficiency.

Aside: The CVT is also a vital part of an electric car using regenerative braking, as the gearing can be used to control the braking effect created by the motor/generator.

The fuel…

While hydrogen produced from renewable electricity (say hydroelectric) is one route to reduced carbon emissions, another is the idea of renewable versions of liquid fuels, the so-called bio-fuels.

While bio-fuels do not have as many issues to overcome as hydrogen, they are still far from a clear-cut solution.

Bio-fuels are simply flammable liquids made from plants (nature’s solar panels) – not only is it a renewable energy source (i.e will not run out), but the growing plants also suck CO2 from the air, so could indeed evolve less net CO2 than sources like coal-derived electricity (or hydrogen made from coal-derived electricity). On the other hand, the balance only works well if the bio-fuel is farmed in an energy (and carbon) efficient way.

The idea is fundamentally good, but as with almost all of the other ideas I have discussed, there is a flip-side.

For the first time, there is a risk of direct competition between poor farmers in remote tropical zones, and the big, fat westerner in his or her gas-guzzler. The latter wants something in their fuel tank and the former wants something in their stomach.

There was much speculation last year that the trend towards bio-fuels was responsible for the crisis in commodity food prices. This may or may not have been the cause – it may well have been the result of irresponsible speculation by commodity traders because few bio-fuel crops have directly displaced food crops. However, the question remains: will the drive for bio-fuels interfere with food supply in the future?

There is also the question of whether rain-forests may be razed to make way for the required crops (there are many choices depending on the rainfall and sunshine levels – cane, corn, beet, sorghum, rapeseed, sunflowers or palms to name a few). If an existing forest is razed it not only destroys biodiversity, but usually also results is a massive belch of CO2 into the atmosphere that will takes many years to offset.

However, bio-fuels are still too promising to let alone.

In Europe most diesel already contains a certain percentage of bio-fuel and the EU has targets for bio-fuel use in transport (5.75% by 2010). Even though the target is unlikely to be met, the trends are strong.

The technical barriers are not too serious – most diesel cars can take bio-diesel blends and can usually be made to take pure bio-diesel with minor adjustments. Bio-ethanol can equally be blended with petrol, and at 10%, many modern cars would in fact run better. However, higher levels are still the reserve of so-called “flex-fuel vehicles’ (FFV’s). These are very popular in Brazil, the world’s leading producer or sugar-based bio-ethanol. The US (especially California) is also leading in this initiative. Although to be fair, this too is not a new idea: the Model-T Ford was a FFV!

In the next article I will looking at the driving techniques that can get 20% more miles out of each tank.


Series home..