Tag Archives: hypothesis

Why big ideas evade big businesses – An Analysis

Big companies usually sell many products – and this collection of products is in constant flux – new ones come, poor ones are chopped and the population may grow or shrink accordingly.

The sheer number of products is however not directly correlated to the revenues or profits though, this is determined by the quality of each product. The main benefit of having a large family of products is that allows diversification (thinks eggs in baskets) – but the down side of having many products is all the additional overhead.

The real health of a product portfolio is not the number of products but an aggregate of the health of the individual products – for each product we consider the margins, the security of those margins, the revenue, the trends in revenues and the prospects of the target market.

Thus a large company should be constantly nurturing and pruning its portfolio, adding products with good margins, and killing off products that do not give the target ROI.

The process, if done well, can result in a company slowly morphing as its follows the money. A company that fails to follow the money is doomed to either die or settle at a marginal profitability protected only by their slim margins and depreciated assets.

It is in this sense that new products make you future proof – the first player in the game gets to makes the rules while new technologies can often be patented to block competition – leading to higher margins. The first entrant may also corner the market  and then benefit from an economy of scale that makes competition for the scraps pointless.

Of course, launching new products requires investment – you need to spend money to make money. And big business has the money entrepreneurs can only dream of.

So the question is this: why is it that small start-ups keep upsetting the apple cart?  Why can’t big business with all its money, all its brainy MBA’s and all those shiny laboratories corner all the good ideas?

Allow me to hazard a guess as to why this is.

Firstly, because of risk:

  1. Once you have a lot of money, it’s no longer a good strategy to “bet the farm”. You have too much to lose.
  2. Once you have money, a better strategy is to spend some of it on risk analysis, and find ideas that are a surer bet – this leads you to products whose success you can predict – which are more likely to be those similar to your existing products.

The problem is, that in the population of all ideas, the game changers are probably at the risky end. See my illustration:

As you can see, big business is stuck in the white sector. The problem is there will always be a risky idea – that big business will pass up – that will turn out to be pure gold.

Now let’s think about the competition. The competition is the world of entrepreneurs – all those people out there itching to start something up.

What we have to realise is that while big business is, on average, smarter than the entrepreneur, it does not have the monopoly on thinking, and though the ideas that come from the general populace may on average be lower in quality, the sheer volume of thinking that gets done and the sheer number of things that are tried out, mean that great ideas will happen. And we won’t hear much about the hundreds that don’t.

My next drawing shows the frequency of idea birth for the two communities – the little curve shows the ideas born and investigated  by big business while the big curve shows the ideas pursued by the wider public. Although big business only pursue nice valuable ideas, the sheer size of the public idea base, combined with their access to riskier options, means the wider community still has the lion’s share of the truly game changing ideas!

So this is my theory about why big business is less innovative than small business. Small business benefits from darwinian selection – it is really a multitude, most of which die – whereas big business cannot afford to die, so its strategy is always to hedge.

So what to do about it? Clearly this should give heart to the entrepreneur – yes, you have an advantage, yes, you will win! Alas, reading more deeply, your advantage is your dispensability – so the trick is to see its a game of numbers, so the real key is to keep trying. You can keep failing and rise to try again, but big business can’t take that risk.

But what if you are big business?   In this case, watch out for promising start-ups and buy them! Connect with the entrepreneurial community by getting involved with things like “open-innovation“, where you publicize what you have and what you need and work with inventors and other companies to solve market needs. Otherwise take your business where entrepreneurs can’t follow – where money is still a huge barrier to entry – land management, mining or pharmaceuticals spring to mind.

And what if you’re an big $ investor? Well in that case, get in touch with The Provincial Scientist 🙂

==============================

Disclaimer: it may be the era of micro-electronics and software that is to blame. When the fuss about these has died down, maybe big business will rule securely as the aristocracy once did.

The compensation factor – or why shoes might just be bad for your feet

There are many modern innovations around which we take for granted as good, that are, indeed, not.

Some interventions, such as seat belts, are shown by statistics to save lives, and as the cost of strapping in is not too high, so the case in favour is strong.

But what about modern running shoes? It may be turning out that nice cushiony running shoes actually cause more injuries than they prevent – and for a similar reason that taking out all the safety features from a traffic intersection may actually make it safer.

Why is this so?

It seems in these latter cases that making people safer only leads them to take more risks, sometimes cancelling out the benefit completely – this is has been termed “risk compensation” – but how does that apply to running shoes?

It turns out the cushioning makes us feel safe – safe to slam down our heels without feeling the shock. It also turns out that while it may feel ok, it allows us to use our foot in a way it was never intended, and results in far greater forces going up our legs.

Think for a moment about the foot of a cheetah, or a deer, or a dog. Ask yourself, where is the heel?

Of course, it is clear once you think about it, it’s way up the leg, far from the floor! And do you think a cheetah has thuds of force going up its spine? I don’t!

Ok, so someone could point out we did not evolve from gazelles and they could also point out that no other primates show a raised heel; true enough – but primates started off as rubbish runners, and it was only the humans that  started down the road to better feet for running during all those years hunting on the African savanna. Whenever there is selective pressure to run, that great engineer (evolution) eventually finds that a raised heel is the optimal solution – remembering of course that the engineer has only the stump of a redundant old fin to work with. Of course, the invention of shoes (and ultimately cars) has completely removed the shaping forces, so I guess our heels will fall once more.

Don’t agree? Ok, pop on those big comfy shoes, and just like a beemer driver cruising at 100mph, tell yourself its safe to slam down those heels 😉

Some interesting sources:

  1. Walking robot – gee look, to make it work, they abandoned heels: http://www.youtube.com/watch?v=sv35ItWLBBk
  2. Walking robot “with heels” seems to need bizarre extra hip mobility: http://www.youtube.com/watch?v=67CUudkjEG4&NR=1
  3. Even Nike, they who started the whole thing now seem to admit openly that bare is best, and sell you the shoe that does it for $90: http://inside.nike.com/blogs/nikerunning_news-en_CA/2009/07/12/engineering-the-nike-free-50
  4. Take a sneak-peek into the barefoot community: http://www.barefootted.com
  5. Oh, and I got put on the scent of this by Christopher McDougall’s excellent book, Born to Run: http://www.chrismcdougall.com/
  6. In the wiki for Risk Compensation it interesting to learn that in Sweden, traffic collision rates dropped for 18 months after they changed which side of the road they drove on. Wow!
  7. The classic tale about how making roads seem more dangerous made them safer: http://www.wired.com/wired/archive/12.12/traffic.html

Parenting: is giving unfair advantage fair when it comes to our kids?

Is equality worth fighting for? Should everyone have the same opportunities in life?

Of course!

Then why is it that so many of us bust our butts to fight for the complete opposite?

Of course, as the title suggests, I am talking about parenting. It seems that while we are happy to claim equality as a goal we work so fervently to create advantage for our kids? When it comes to our little angels, we suddenly forget our high-minded ideals, and act with a favoritism that would be illegal if it were based on colour, religion race or creed.

This may sound like a trivial point when you first think about it, but hold on two ticks and give it a little think.

How will society ever become equal if every parent is hell-bent on giving their kid every advantage they can?

Would I not try to get my kid into the class with the best teacher, or the school with the best record, or the college with the most prestige?

Would I not work hard to pay for ballet classes and piano lessons and school trips to DC and all the things a kid needs in order to be equipped for the high life? Would I not wish for them to inherit a fortune and thriving family business?

How can I compete in a meritocracy with my only aim being to give my kids an advantage in the next leg of the race?

The meritocracy is no meritocracy if you can inherit advantage, and if you can pass on no advantage to your kids, then what is the point of the fight?

It seems the very concept of a fair system where reward is based on individual effort is unstable as we all strive to pass on generational advantage.

It also seems to me that people’s fortunes do not depend on their own merits as individuals, but rather on the merits of their “node” in the web of society – where opportunities depend on connections. As the sayings go – no man is an island and it’s not what you know, but whom.

These realisations suggests to me that equality or even the idea of the meritocracy are mirages – good to aim at, but don’t go too close as they will recede, or worse still, vanish.

Does natural really = good?

Don’t you hate being taken advantage of?

You don’t have to look far in supermarkets to see scientifically dubious claims on product packaging. We already know about dubious health effects of certain foods and the arms race by advertisers to come up with fancy ways to pretend their products are good for us. Now the latest trend is to crow about how ‘natural’ a product is – the world natural, is however now officially anointed a weasel word.

What exactly does it mean? We all know what they want us to think: wholesome, pure, robust, healthy; but what does natural really mean?

As the provincial scientist, I will take a scientific view: natural originally meant ‘of nature’, that is to say, real, or not-supernatural. So technically humans are natural as is all we do. Of course, the term has now been somewhat perverted, and is commonly taken to mean: not man-made.

Any decent scientist is going to have trouble with this definition because it is far too open to interpretation and begs the question: how much human involvement is required to make something non-natural?

This is the vagueness has has been unconsciously used to create a definition that helps sell products: this definition suggests somewhat arbitrarily that ‘some’ degree of purification, or ‘some’ types of blend constitute something unnatural. In addition, if the substance is not found in nature at all it is considered even worse. Sometimes the product is cast as unnatural just for having a chemical sounding name, or because it’s produced by a drug company. On the other hand, some products are branded natural despite containing preservatives, colourants and so on. We simply cannot trust food marketing.

Modern diet sodas would meet most people’s definition of synthetic: but what about bread? Milk? Where do we draw the line?

One argument says if all the ingredients are natural, then the product is natural – so, for example, beer made without recourse to ‘chemicals’ may be considered natural.

Unfortunately, this argument simply displaces the vagueness: now the question is: what constitutes a ‘chemical’? We are all chemical, after all. So yet again, chemicals are arbitrarily divided into good and bad depending whether they occur in nature. Fruit flavoured sodas rarely contain actual fruit: we learned which chemicals were responsible for apple, strawberry and banana flavours and can now synthesize them perfectly – this is done in large quantities that make it far cheaper than actually farming the fruits themselves. It is fair to say that the supply chain for these flavours is often complex, so a little skepticism is warranted, but upon inspection, it turns out that most synthetic flavours are very well understood and are often far purer than the ‘natural’ alternatives. The idea that we eat barbecued meat, smoke tobacco and drink coffee, but are afraid of Acesulfame K is somewhat irrational.

So it leads us to ask – why? Why is the devil’s brew OK, and Acesulfame K not? Why is something man-made inferior to something natural? Why have we got it in for synthetic stuff?

In the study of ethics, there is an argument called the appeal to nature used to justify actions as moral: this is an argument that basically says natural=good.

However, there is no good reason to suppose this. I propose that this fallacy is behind our fears of the synthetic and is the driving force behind major societal trends such as the organic movement, and is a mainstay in the ongoing survival of many useless alternative medicines… so I thought it deserves to be unpacked a little.

The Moral Maze

Get this shirt, click the image!

It is worth reading up on the thought experiments done to try and understand morals. See for example the trolley problem: would you push someone in front of a train to save five lives? Or consider the scene in the last episode of M*A*S*H were a mother is given the choice to smother her own child to avoid a group of villagers from being detected by enemy soldiers.

By thinking through these scenarios, and unpicking our reactions, scientists have learned that different parts of us have different reactions – there are the more emotional reactions and the more logical, reasoned reactions. The logical reactions can seem immoral, and we would struggle with guilt if we made them, but why?

Emotions like fear, revulsion, guilt and love often seem illogical – and so they often are. They we not designed, but emerged as evolutionary advantageous, thus they often seem without purpose. Thus we can have emotions that do not make logical sense; on average they help, but they do malfunction, as in the trolley problem.

Will knowing this failure of the mind help us make these hard choices by reducing the guilt? I don’t think so – we cannot escape our emotions. However, the logical approach should still be used – for example by leaders who need to create policies for the greater good. This makes me think of the famous line in A Few Good Men “You want the truth? You can’t handle the truth!”. I am suggesting that there are situations when the most moral act for a leader is immoral on the face of it and would be condemned if made public.

Thus, we see that the study of what is moral is a tricky field and we see that the systems used in society, while designed to be ethical, may often not be moral (such as a lawyer defending a suspect they know to be guilty).

So how does this tricky world apply to the question of naturalness? Well I would assert that our reaction to substances, like our reaction to the trolley car problem, is again a battle between deep evolutionary instincts and our power to reason.

Firstly, we have a natural (and wise) aversion to new things, especially foods: eating anything new increases the risk of poisoning, and so, eating things eaten for generations is safer. Synthetic foods are clearly ‘new’; they do not have grandma’s stamp of approval – we do not know if generations of people have thrived on this stuff. While this rule of thumb is a good starting point, it is obviously an emotional generalization that fails simple examination. What’s more, as our understanding of both nutrition and hygiene have massively improved health and lifespan in the last hundred years, we should actually favour the new – and fear the old!

The next argument goes something like this. We have a vague feeling that as our bodies evolved in a natural world, and the highly purified chemicals will somehow put our wonderfully complex systems out of whack. It is true that when we eat natural foods, our bodies are very adept at ‘processing’ them; and many natural foods do contain a wide array of essential and complementary nutrients, but it is unsupported speculation to suggest that our bodies needs cannot be met by more processed ingredients. Modern nutrition science understands very well what the body needs in terms of fuel, salts, roughage and so on, and we also understand how diet effects the risks of disease. While modern nutritional science does conclude that natural foods have many benefits – it does not conclude that synthetic is bad. There is room for both!

Lastly, there is an argument straight from moral philosophy: does it makes sense, for example, so say that killing someone is morally worse than failing to save someone, even though a choice is made in both cases and the outcome is effectively the same? If so, then this reveals a built-in preference for ‘non-interference’. So perhaps in a similar way, nature may be considered a ‘default’ – it’s what happens when humans are absent, ‘it’s what would happen anyway’ – like animals hunting for food – and so has a moral free pass. Following this through, nature has no immorality, morality is something tied to us humans and our choices – and so everything we do as humans is therefore potentially immoral.

This argument is also a little weak – as humans have the power to do tremendous good – and the evidence that animals do things we find immoral is there – after all, we are animals. Animals, like us have complex societies, trade favours, shun freeloaders and much more. If you want to learn more, the writings of Marc Beckoff shine a spotlight onto this.

So is there a take home?

OK, now we know – the ‘nature card’ will take advantage of our irrationality, it will stoke our fears and play with our conscience. It will manipulate how we spend our money, and it will sometimes do us more harm than good.

But what makes it worse, is that most people who draw the nature card are good people.

This is one of the many small tragedies that make up our modern times.

Stuff I Wish I Had Read When I Was Younger

Over the years I have supervised and mentored several PhD students, and recently our firm started to award scholarships to undergrads, and I was asked to support one such scholar. These scholars are from the best and brightest and so I got to thinking…

Graduates today have it tough, competition is tough, people work longer and harder than ever and stress is hitting us earlier and earlier in life – or so it seems. I would argue that, to some real extent, things have always been getting worse, and therefore by induction, we can prove that they have haven’t really changed at all.

No, the graduates of today have unparalleled opportunity to learn, to travel and to experience. The brightest graduates have the world at their feet and will be its commanders when we are are all retired and done for.

So what could I do to support this scholar? In the end it was easy – I asked myself – what do I know now that I wish I had known sooner? Most of this is in attitudes and is deep in my psychology, and is the result of direct experience – but it turns out that a healthy chunk of my scientific learning experience can be re-lived – by reading some of the books I think steered my course.

So I made a point to summarize some of the best science related books I have read (and some of the most useful internet resources I have found), and dumped the list complete with hyper-links in an email to the scholar. I hope she goes on to be president!

Now having gone to the effort, it would be a crime to keep this email secret, so here it is, (almost) verbatim!

================

As promised, here is a list of useful resources I wish I had known about when I was an undergrad. I am glad I got round to this, it should be useful for several other students I work with, and has also led to me revisiting a few things! I think I may brush it up and pop in on my blog if you don’t mind…obviously I won’t mention you!
Anyway, back to the business. To me, science is not all about chemistry, molecules, atoms, valence electrons and so on. To me, is is the process of trying to understand the world, and this set of materials I have hand picked, should you get through even a part of it, will not only educate but inspire.

This may not be the very best list, and I am sure there are many great books I have not read, but I have stuck with ones that I have, so you will have to rely on other people for further recommendations.

Jarrod’s reading list: science/psychology/economics & so on

  • I’ll start with something really easy, relevant and engaging – an excellent (if quirky) summary of material science: The New Science of Strong Materials – Prof Gordon  has written another on Structures that is also worth reading.
  • Ok, this next one is not a book, but a paper; I like it because it shows that many stuffy professors are wrong when they prescribe boring scientific prose for papers. This paper uses the criminal “us” and “we” and discusses subjects as if with a friend. Shocking form, especially for a junior scientist. This paper by an unknown, changed the world.
  • Guns, Germs and Steel” – this is large-scale scientific thinking at its best- the book looks at how we can explain why the world is the way it is (especially the inequality) by looking at how technology spreads through societies.
  • Mistakes were made…but not by me” – this is required reading if you want to work with other people, so its basically for everyone then…
  • Then to take it to the next level – “How the mind works…” – Stephen Pinker‘s other books are also good if you like this one.
  • “Flatland”, (full text here) was written in 1884, and is essential reading because it defines the cliche “thinking outside of the box”.
  • To make your upcoming economics courses more interesting, first read this easy-to-read popular book: “The Undercover Economist“.
  • Also, Freakonomics– it’s shameless self promotion by egotistical authors, but hell they are smart, so put up with it.
  • The Tipping Point –  Malcolm Gladwell is a current thinker I really like; he’s not satisfied to focus on one thing for very long – his other books are on totally different stuff, but are equally thought provoking.
  • The selfish gene” – Obviously I would firstly recommend “On the Origin of Species”, (full text here) but if you are short of time (which you should be as an undergrad), you can learn most of the basics, and also get updated (well up to the 1970’s at any rate) by reading Dawkins’ classic.
  • I couldn’t ignore statistics, so I will include two – one classic, “How to Lie with Statistics”  and a more modern one “Reckoning with Risk“, they are quite different, but either will get the important points across.

Alas, books are perhaps becoming obsolete, so I better include some other media:-

  • The first one is so good I can’t believe its free – try watch at least one a week, but the odd binge is essential too. http://www.ted.com/
  • Next, an excellent physics recap (or primer) – but  you need lots of time (or a long commute!) to get through this lot – look on the left menu for Podacts/Webcasts on this webpage: http://muller.lbl.gov/teaching/physics10/pffp.html – I cannot begin to praise the worthwhileness of this enough. It used to be called “Physics for future presidents” because it teaches you enough to understand the risks of nuclear energy, and the likelihood that we will all run our cars on water – and let you know when you are being duped or dazzled by big words.
  • When I was somewhat younger there was a TV show called Cosmos, hosted by Carl Sagan, you may know of it. You could watch in now here, though obviously it is dated, so perhaps you shouldn’t; the reason I mention it, is because it was key in creating a generation of scientists, people who were inspired by Carl to be inspired by the universe. The previous generation had the space race and the moon landings to inspire them, but since then science has been on a downhill, with 3-mile island, global warming, etc, etc, and we have had no more Carl Sagans to cheer for us; Cosmos was a rare bit of resistance in the decline of the importance of science in society. You may also know that there have been battles in society (well in the circles on intelligentsia at any rate) about science – on the one had the ‘two cultures debate‘ and more recently, the ‘anti-science’ movement (suggested in books like “The Republican War on Science“. I do not wish to indoctrinate you, but rather make you aware that being a scientist used to be cooler and used to be more respected and something is indeed rotten in the state of Denmark.
  • Getting back on track, here is an excellent guide to critical thinking (something else sadly lacking in the world) – don’t read it, listen to the podcast versions (also on itunes):
    “A Magical Journey through the Land of Logical Fallacies” – Part 1 and Part 2
    I think this should be taught in school. Brian Dunning’s other Skeptoid podcasts put these lessons into practice showing how a scientific approach can debunk an awful lot of the nonsense that is out there (alternative medicine, water dowsers, fortune tellers, ghost hunters, etc etc).
  • If you do happen to have any time left, which I doubt, there are several other podcasts on critical thinking – that use a scientific approach to look at the world and current affairs: –

=============

Postscipt – Dear readers, please feel free to append your own recommendations to my letter in the comments section below. If there is one thing I know well, and that’s how little I know. I feel I only started to read ‘the good stuff’ far too late in life, and so those with more years than me (or better mentors), please do share. But bear in mind, this is principally a science oriented list, and is meant to be accessible to undergraduates – I left out books like Principia Mathematica (Newton) because it is really rather unreadable – and the Princeton Science Library (though awesome) is probably a bit too intense. Also, in the 30 minutes since I sent the email, I have already thought of several others I sort of, well, forgot:

That’s it for now…

The Art of Forgetting

There is a skill I have not yet heard taught, but that is invaluable: the ability to remember what it was like before you knew something.

For example, a good story teller needs to be able to put him or herself into the mind of their characters so that the ‘revelations’ are best timed – this requires putting oneself in the position of the character (and by extension the listener/reader) – of not knowing what you know (as the author), and reacting appropriately to each twist and turn of the plot.

Now it occurs to me, that when we remember our own past, we often forget that the person in the memory is not actually us; it was a past version of ourself, that does not know what we know – and should thus be given the same treatment the author gives their character.

Unfortunately, our mind is obsessed with the desire to ensure our memories are consistent with our self image and narrative, and thus when we look back on decisions we made we struggle to identify the true reasoning; we routinely select reasoning consistent with what we know today.

So it turns out, that to truly remember, we actually need to be able to forget!

——————

Postscript: That said, it would be a useful to be able to selectively forget things temporarily; not just to write a good thriller, but to play around and find out which bits of my knowledge are responsible for which bits of my attitude…

 

Confessions of Scientific Atheist

The Evolutionary theory of Natural Selection makes extraordinary claims. It explains the ability of creatures to convert sunlight to useful energy, to spin silk, to metabolise sulfurous rock – and much more besides.

Such amazing feats in nature require an amazing explanation. The existence of a God is very helpful in this regard; after all, humans have designed diesel cars and digital computers, so why couldn’t an entity with God’s power and talent create all the nature we see?

The trouble many people have with Natural Selection, is that while it can clearly explain some biology, using it to explain away practically all biology (and psychology, language, culture, etc.)  is an extrapolation – and a big one at that.

Why do scientists allow such an extrapolation? Surely this is arrogance?

================

Thinking about this, I have an proposition…

If you come from the premise that there is nothing outside of nature (see my recent post), then it comes easily. If the God option is written off a priori, we have no other logical option than to expect that the gaps in our knowledge of evolution will be filled in eventually. This allows us to sleep at night with the extraordinary.

If you start from the premise that there is a God, then this will strike you are arrogant.

================

The constant supply of greater details, filling in the gaps, gives encouragement to those who feel the theory is right (see God of the Gaps). It’s a bit like looking for Nessy – we can’t do a Star-Trek style ‘scan for lifeforms’ to be sure she does not exist, but the more we search the less likely she is to exist.

Of course, while evolution explaining away the wondrous variety in life does not prove there is no God, it sure makes God less necessary, and less necessarily capable.

What exactly is ‘science’?

I used to think science was the practice of the scientific method; i.e. you propose a hypothesis, you develop a test of the hypothesis, execute it and prove the hypothesis.

That worked for me until the end of high school.

At university, I was a true nerd. I read all my textbooks cover to cover (mainly because as I was too shy for girls and too poor for booze). During this time, the definition above started to fail. So much of the science was maths, statistics, observation, pattern recognition, logic and quite a bit of rote learning. Not all of it fitted into my definition of science. I became a fan of a new definition: science is the study of the nature of reality .

But then I did post-grad, and I realised that not much in science is ‘proven’ (I guess this is the point of post grad study). Evolution, for example, is not proven. That the sun revolves around the earth is not ‘proven’. I discovered that the only things that could be proven were ‘ideas’ about ‘other ideas’. Bear with me on this one.

Let us say we define the number system – this is an ‘idea’ or conceptual construction. Within this construction we can ‘prove’ that one and one is two. Because we ‘made’ the system, with rules, then we can make factual and true statements about it. We can’t do this about the real world – we cannot say anything with absolute certainly because we rely on flaky inputs like our own highly fallible perception.

It’s like that old chestnut: how can you be sure you are not living in a giant simulation? Of course you can argue that it is pretty unlikely and I would agree, and right there we have a clue to a better definition of science.

It turns out that much of modern science deals in ‘likelihood’ and ‘probability’ rather than proof and certainty. For example, we can say that the theory of evolution is very likely to be more-or-less right, as there is a lot of corroborating evidence. Science cannot be run like a law court – where the prosecution only need to reach a threshold of reasonable doubt to ‘prove’ someone guilty.

Aside for nerds: Science says you can use logic to prove things absolutely, but logic only works with ideas, and there is a breakdown between ideas and reality, so one can never prove things in reality. So it is thoroughly wrong for a court to say that someone has been proven guilty. The courts use this language as a convenience, to “draw a line under” a case as they have not found a moral way to dole out punishments based on probabilities. Imagine a world in which a murder suspect gets a 5 year sentence because the was a 20% chance he was guilty! Sports referees often operate in this decisive way, perhaps because it saves a lot of arguing!

Anyway, good science cannot just give up and say once there is consensus something passes from theory to fact. This is sloppy. We have to keep our options open – forever.

Think for example of Newton’s Laws of Motion. They are called ‘Laws’ because the scientific community had so much faith in them they passed from theory (or a proposed model) to accepted fact. But they were then found wrong. Strange that we persist in calling them laws!

It took Einstein’s courage (and open mindedness) to try out theories that dispensed with a key plank of the laws – that time was utterly inflexible and completely constant and reliable.

So it is that the canon of scientific knowledge has become a complex web of evidence and theories that attempt to ‘best fit’ the evidence.

Alas, there are still many propositions that many so-called scientists would claim are fact or at least ‘above reproach’. Evolution is attacked (rather pathetically), but the defenders would do well to take care before they call it ‘fact’. It is not fact, it is a superbly good explanation for the evidence, which has yet to fail a test of its predictions. So it is very very likely to be right, but it cannot be said to be fact.

This is not just a point of pedantry (though I am a bit of a pedant) – it is critical to keep this in mind as it is the key to improving our model.

Two great examples of models people forget are still in flux…

1) The big bang theory

2) Quantum theory

I will not go into global warming here though it is tempting. That is one where it doesn’t even matter if it is fact, because game theory tells you that either way, we better stop making CO2 urgently.

Back to the big bang.

I heard on the Skeptic’s Guide podcast today about an NSF questionnaire that quizzed people about whether they believed the universe was started with a massive explosion, and they tried to paint the picture that if you didn’t believe that, then you were ignorant of science. This annoyed me, because the big bang theory is now too often spoken of as if it were fact. Yes, the theory contributes viable explanations for red-shifted pulsars, background radiation, etc, etc, but people are quick to forget that it is an extrapolation relying on a fairly tall pile of suppositions.

I am not saying it is wrong, all I am saying is that it would be crazy to stop exploring other possibilities at this point.

You get a feeling for the sort of doubts you should have from the following thought experiment:

Imagine you are a photon born in the big bang. You have no mass, so you cannot help but travel at ‘light speed’. But being an obedient photon, you obey the contractions in the Lorentz equations to the letter, and time thus cannot pass for you. However, you are minding your own business one day when suddenly you zoom down toward planet earth and head straight into a big radiotelescope. Scientists analyse you and declare that you are background radiation dating from the big bang and that you have been travelling for over 13 billion years (they know this because they can backtrack the expansion of the universe). Only trouble is, that for you, no time has passed, so for you, the universe is still new. Who is right? What about a particle that was travelling at 0.999 x the speed of light since the big bang? For it, the universe is some other intermediate age. So how old is the universe, really?

This reminds us of the fundamental proposition of relatively – time is like a gooey compressible stretchable mess, and so is space, so the distance across the universe may be 13.5 billion light years, or it might be a micron (how it felt to the photon). It all depends on your perspective. It is much like the statement that the sun does not revolve around the earth and that it is the other way around. No! The sun does revolve a round the earth. You can see it clearly does. From our perspective at least.

Now, quantum theory.

Where do I start? String theory? Entanglement? Please.

The study of forces, particles, EM radiation and the like is the most exciting part of science. But being so complex, so mysterious, so weird and counter intuitive, it is super vulnerable to abuse.

Most people have no idea how to judge the merits of quantum theories. Physicists are so deep in there, they have little time (or desire or capability) to explain themselves. They also love the mystique.

I do not want to ingratiate myself with physicists, so I will add that the vast majority have complete integrity. They do want to understand and then share. However, I have been working in the field for long enough to know that there are weaknesses, holes and downright contradictions in the modern theory that are often underplayed. In fact these weaknesses are what make the field so attractive to people like me, but is also a dirty little secret.

The fact is that the three forces (weak nuclear, strong nuclear and magnetic) have not been explained anything like as well as gravity has (by relativity). And don’t get me started on quantum gravity.

———————-

Anyway, thinking about all these issues, I concluded that science was (definition #3) the grand (platonic) model we are building of reality, ever evolving to best fit our observations.

My man, Plato

That works well for me. However, I recently came across a totally different definition for science:

# 4) “Science is a tool to help make the subjective objective.”

OK I paraphrased it to make it more snappy. It was really a discussion about how science was developed to overcome the fallibility of the human mind. Examples of weaknesses it needs to overcome are:

  1. The way our perception is filtered by preconceptions
  2. How we see pattern where there is none
  3. How we select evidence to match our opinion (confirmation bias)
  4. How we  read too much into anecdotal evidence
  5. etc etc.

I could go on. So ‘science’ is the collection of tricks we use to overcome our weaknesses.

I like this definition. We are all going about, and in our heads we are building our model of the world… and its time for an audit!

Communicating across cultures – how to be understood!

If beauty is in the eye of the beholder, then the message is in the ear of the listener.

Thus, when we communicate, a key challenge is to make the intended message match the received message as closely as possible. Thus effective communicators are very good at getting into the mind of the audience and seeing or hearing the message from their perspective.

Of course, not everyone can do this. One way this is resolved is by taking advantage of two way communication – if the listener can paraphrase what you are telling them, as a sort of parity check on the message, then any misunderstandings can be revealed and dealt with. But this requires a good listener.

It is also important that if the message has a ‘thread’ (like a storyline) that the listener does not lose that thread due to some short lived issue – missed words due to accent, background noise or indeed the use of unfamiliar words and jargon.

Thus, when telling a story there needs to be redundancy in the message (just like in electronic communication protocols) such that if the thread is dropped it may be picked up again.

—————–

I recently moved to the USA from the UK and am currently learning how to communicate across a cultural divide.

Anyone would think that Americans would speak English and perhaps they do, but ‘English’ is such a broad church that it allows for different groups to live their entire lives using only slightly overlapping subsets of the language. Observing these vocabulary differences I have noticed a sort of one-way breakdown that occurs in this case…

Diodes only allow electons to flow one way...

Just like a diode can allow electric current to flow one way and not another, it seems that poor vocabulary matching can have a similar effect on a message. It turns out that when Americans talk at me, I can easily recognize the words I don’t know, but when I talk I cannot recognize (or predict) the words they won’t know.

This may seem like a statement of the blindingly obvious, but it is the same effect as the card trick when the magician shows you a bunch of cards, say ten, and asks you to pick one and remember it. He will then shuffle the cards and show them to you again and tell you that your card has been removed. Lo and behold, your card is gone. Amazing, how did they know which one to remove, what are the chances!?

Well the trick is simple, the magician changed ALL the cards with sleight of hand, and relied on the fact that you didn’t bother to memorize the ‘other’ cards.

It is similar to the issue with speaking to foreigners – it is very hard to know which of your words are missing from their vocab. You can spend weeks or months living with them and you will pick up their vocab but you will find it hard to notice the words they don’t use. Thus after a while, a foreigner will understand pretty much all he or she hears, but when they talk, will still be poorly understood as they will persist in using unknown words.

Thus the flow of information is retarded in one direction only. I think this is a neat observation. That is to say, it is cool and clever, not clean and tidy 🙂

Medical Trends: The Holistic View

There is clearly a lot to be learned about medicine from history.

Indeed many effective treatments can (and have) been identified not by close examination of the human body, but but the close observation of patterns in statistics.

Thus is is possible with good data, a good eye, and quite a bit of spare time, to see many of the contributing factors to disease or accidents. The famous cases include the realisation that the plague was carried by rats and that cholera was in the water. Thus was born the science of epidemiology.

I think if I was starting university again right now, there is a good chance I would have steered towards that as a profession – for it has saved countless lives, and can be done from the safety of a nice desk, replete with good coffee and a supply of biscuits. I have never been drawn to a life of tending to the ill or injured, so this would have been a nicer way to get my benevolence ‘hit’.

Alas, I studied engineering, and though perhaps I could use epidemiological methods to predict metal fatigue or bridge collapses, I am not sure that would be very useful. We engineers seem to spend much more time looking at the costs of making something, and then the price you can sell it for.

Anyway, time for the science bit…

Epidemiologists looks for patterns relating illnesses to other things: other illnesses, location, professions, exposure to animals, and many more.

There are some pretty major trends in health happening right now. For a good example, look at Hans Rosling’s presentation at TED recently. He shows, among other things, that people are living longer than ever before. Despite all the talk of the world going to pot, it seems there is an untold story – the story of how life expectancy in the developing world has been climbing beautifully for several decades. The stats tell a story of a golden age in humanity.

To go off on a slight tangent, I have to say what a pity it is that the media focus so much on the wars and tragedies. Of course, they sell sensation, so they will continue, but we humans are not used to getting news from the whole planet – we have barely got out of the trees and only left our small villages for cities an eye-blink ago. Evolutionarily speaking, our fears were programmed in a much smaller environment where news did not travel very far – the story of a death would be significant because you didn’t know very many people. Nowadays we get more news and we also know far more people because of the world of celebrity (blame the media again), and because we are so ‘networked’ (its the ‘new’ media this time) we also know a huge number of people by association. Thus we receive bad news far more often and tend to overvalue its direct threat to us.

Now let me get back on track. We are living in a golden age – better nutrition, cleaner water, the understanding of the theory of germs, and of course, advances in medicine (think vaccines, think penicillin, think surgical methods). We have benefited hugely from a better understanding of how the body works and of how fungi, bacteria and viruses work.

The activity is higher than ever on countless fronts: dementia,  HIV/AIDS, epilepsy, stroke, heart disease, and so on… but what about the big kahuna? I refer of course to cancer.

Well it has not been cured. The ‘cure for cancer’ has long been held up as the iconic challenge to medical science. Only trouble is, the challenge is flawed. There is no one ‘cancer’ – there are many different cancers  – and the little bastards are all subtle and complex – and even if you can kill one, killing it will often kill off something else, because cancers are not as alien as say viruses – they are in fact our own cells turning on us.

So rather than looking at cellular function and cunning ideas like rna interference, what can we do with epidemiology?

Cancer death rates are not independent of the death rates from other causes...

Yes, cancer is not an ‘epidemic’ – we are not studying its spread, but we can certainly study correlations and seek causation (think smoking tobacco or working with asbestos). Smarter people than I are already poring over this sort of data, and there is much hand-wringing nowadays because the ‘easy’ causes have most been found and now we are looking at the weaker correlations, where the link is not certain, or where the sacrifice to benefit ratio is unclear. Think barbecue meat, think E numbers and so on.

But I don’t want to talk about that sort of cause. What I am wondering is relates more to age…

Cancer is somewhat a statistical process – it may arise as a random mutation, which, as fate would have it, is also bad for one’s health. Many mutations result in no effect or perhaps cell death or perhaps just reduced function of the cell.  There are very few mutations that actually allow for continued (and sometimes rampant) growth and macro level harm. As the mutation is a random event, the chance of occurrence will depend on the number of ‘cellular events’ that occur in a lifetime – this is determined by two factors, the frequency of the events – and the length of the lifetime.

Now add to that randomness the fact that many cancers are slow growing – they may take too long to harm or kill you and something else gets you first.

These two factors together go to show you that the longer you live, the greater the risk of cancer development. Add to this the probable third factor that older cells are more likely to go haywire, and you can easily see why cancer is more commonly suffered by older people.

Does this mean that you risk of ‘catching’ cancer ‘today’ is less if you are younger? Well yes, if your cells (or immune system) are in better shape, mutations may be rarer and you may fend off some that do occur – however, your chance of ‘having’ cancer (rather than ‘getting’ it) are accumulative with age, so this is a very strong factor when looking at screening (looking for cancers that already exist). It is often only worthwhile screening for cancer in older people where the ‘hit rate’ makes the costs (false positives) justifiable.

This age affect is well known, but I am wondering if another factor may be throwing a curve ball into the stats – the longer lifespan of people generally.

As some types of cancers are being treated more effectively (prevented/slowed/cured), and as death from other causes (heart disease, pneumonia, tuberculosis, etc.) drops, does that not give cancer more fertile ground to wreak its havoc?

In other words, will curing other ailments, to some extent, tend to push us into the waiting arms of cancer?

And if this is already happening, perhaps the cancer death rates, hiding underneath the massive advances there may actually be an  underlying increase in death from cancer due to the increased survival of everything else.

———————

So! We all die of something eventually. I guess the question medical science now needs to ask is:  what is the best way to die? Should we be saved from one death only to have another? Will cancer rates start to creep up again as advances against cancer slow and lifespan continues upward? Time will tell!